پژوهش ها و چشم اندازهای اقتصادی

پژوهش ها و چشم اندازهای اقتصادی

نقش سوگیری‌های شناختی در سیاست‌گذاری تغییر اقلیم با استفاده از نظریه‌های اقتصاد رفتاری

نویسندگان
1 دانشجوی دکتری اقتصاد بخش عمومی، بخش اقتصاد، دانشکدۀ اقتصاد، مدیریت و علوم اجتماعی، دانشگاه شیراز، شیراز، ایران
2 دانشیار، بخش اقتصاد، دانشکدۀ اقتصاد، مدیریت و علوم اجتماعی، دانشگاه شیراز، شیراز، ایران
3 استاد، بخش اقتصاد، دانشکدۀ اقتصاد، مدیریت و علوم اجتماعی، دانشگاه شیراز، شیراز، ایران
4 دانشیار، گروه مدیریت بحران و سوانح، دانشگاه یورک، تورنتو، کانادا
چکیده
در سالهای اخیر، آسیب‌پذیری در برابر تغییرات اقلیمی به یک موضوع مهم برای سیاست‌گذاران تبدیل شده است. این وضعیت اضطراری نیاز به اقدامات فوری، گسترده و همه‌جانبه دارد. این مقاله به دنبال ایجاد پلی بین مداخلات و سیاست‌گذاری اقلیمی، و حوزه علوم رفتاری به‌ عنوان یک مسیر عملی، کم‌هزینه و با اثربخشی بالا و در قالب نظریه تلنگر است. دراین راستا بررسی میشود که چگونه مداخلات رفتاری که ریشه در سوگیری‌هایی نظیر سوگیری زیان‌گریزی، تنزیل هذلولی و اثر قالب‌بندی دارد، باعث می‌شود که افراد به انتخاب‌های سازگارتر با محیط‌زیست و مسئله تغییرات اقلیمی ترغیب شوند. بسیاری از تحقیقات نشان داده‌اند که اثر قالب‌بندی با ادغام در دیگر سوگیری‌های شناختی به طور گسترده‌ای برای مطالعه رفتار محیط زیستی به عنوان یک سیاست کم هزینه استفاده شده است. در این مقاله با یک روش نیمه‌آزمایشی نشانداده می‌شود که چگونه قالب‌بندی اطلاعات (قالب‌بندی انتفاع و ضرر و سوگیری تنزیل هذلولی، همچنین قالب‌بندی اطلاعات گسترده و پیوسته) بر نگرش و درک کلی افراد از تغییرات اقلیمی اثر می‌گذارد. نتایج نشان می‌دهد که شدت درک اثرات تغییرات اقلیمی و تمایل تغییر رفتار، تحت قالب‌هایی که بیان‌گر زیان در زمان حال هستند، به طور قابل توجهی بیشتر از قالب انتفاع و آینده بوده است. علاوه بر این، قالب اطلاعات گسترده و پیوسته نیز تاثیر چشم‌گیری در متغیرهای بینشی و رفتاری افراد داشته است. بر اساس یافته‌های این پژوهش، سیاست‌گذاران حوزه تغییرات اقلیمی می‌توانند از اطلاعات قالب‌هایی که تداعی کننده زیان در زمان حال است و همچنین قالب‌های با اطلاعات گسترده و پیوسته برای ارتقای نگرش و تمایل عمومی برای مشارکت در مقابله با اثرات تغییرات اقلیمی استفاده کنند
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Cognitive Biases in Climate Change Policy using Behavioral Economics Theories

نویسندگان English

Mojtaba Panahi 1
rouhollah shahnazi 2
karim Eslamloueyan 3
Ali Asgary 4
1 PhD Candidate, Department of Economics, Faculty of Economics, Management and Social Sciences, Shiraz University, Shiraz, Iran
2 Associate Professor, Department of Economics, Faculty of Economics, Management and Social Sciences, Shiraz University, Shiraz, Iran
3 Professor, Department of Economics, Faculty of Economics, Management and Social Sciences, Shiraz University, Shiraz, Iran
4 Associate Professor, Crisis and Disaster Management Department, York University, Toronto, Canada
چکیده English

Introduction:

In recent years, policy makers have increasingly recognized the significance of vulnerability to climate change. This urgent situation necessitates the implementation of immediate, extensive, and comprehensive measures. Extensive scientific consensus has demonstrated that human activities have contributed to significant climate warming trends. However, despite this evidence, there are individuals who remain skeptical and deny the existence of climate change. Consequently, addressing this skepticism and effectively tackling the climate crisis require fundamental changes in behavior and attitudes across various levels and domains of human life. Therefore, the primary objective of this article is to examine the behavioral factors involved in climate policy making, with a particular emphasis on the role of cognitive biases.

Methodology:

This research employed a semi-experimental method, drawing on the principles of behavioral economics. The study utilized a design that included both an experimental group and a control group, with pre-test and post-test assessments. The experimental group was exposed to different information frames, which were developed based on the principles of behavioral economics, while the control group did not receive any framing intervention.

Data for this study was collected through fieldwork and a questionnaire. The statistical population consisted of individuals who had access to WhatsApp, Telegram, and Instagram platforms during the experiment, which took place in the spring of 2023. The target sample size for this research was determined to be 600 participants, divided into six groups of 100 individuals each. The sample size was determined using Cochran's formula for limited populations. Additionally, a random sampling method was employed in this research.

Results and Discussion:

This article aims to establish a connection between climate policy and behavioral sciences by introducing the practical and cost-effective approach of nudge theory. Drawing on insights from behavioral economics, specifically through behavioral interventions that leverage biases such as loss aversion, hyperbolic discounting, and the framing effect, this study investigates how these interventions can encourage individuals to make choices that align with addressing climate change and environmental concerns. Moreover, existing research has demonstrated that integrating the framing effect with other cognitive biases can be an effective and low-cost policy tool for studying environmental behavior.

Using a semi-experimental methodology, this article examines the impact of information formatting, including profit and loss framing, hyperbolic discounting bias, as well as extensive and continuous information presentation, on individuals' general attitudes and understanding of climate change. The hypotheses of this research were derived from the literature of behavioral economics, cognitive science, and previous studies in the field of environmental issues. The findings of this research indicate that individuals exhibit a greater sensitivity to loss framing, supporting hypothesis H1. In other words, people are more responsive to potential losses than gains when making decisions. Additionally, the results demonstrate that individuals display a significantly higher willingness to participate when presented with present-loss and present-profit framing compared to future-loss and future-profit framing, aligning with hypothesis H2. This preference for the present over the future, known as present bias and hyperbolic discounting bias, has been extensively examined and validated in behavioral economics literature. Furthermore, the findings show that framing losses and emphasizing the present context contribute to a heightened perception of risk, consequently increasing individuals' willingness to take preventive measures under a loss framework.

Additionally, the provision of information in a broad and continuous manner also yielded a significant effect in influencing individuals' behavior, corroborating hypothesis H3.

Conclusion:

This study offers novel insights for policymaking and governance regarding public participation in mitigating the impacts of climate change. The findings indicate that the utilization of loss-present framing and continuous framing proves more effective in increasing the willingness of the general public to engage in climate change reduction efforts. Based on the research conducted in this article, climate change mitigation policies can be effectively promoted in public settings through the implementation of nudges that employ loss-present framing when delivering information.

Furthermore, the current reliance on economic incentives in most policies to encourage public participation is a noteworthy issue. However, this study proposes the use of non-economic incentives and demonstrates the positive impact of nudges on individuals' willingness to engage in projects aimed at reducing the effects of climate change

کلیدواژه‌ها English

Climate Change
behavioral economics
Cognitive Bias
nudge
Hyperbolic Discounting Bias
Loss Aversion Bias
Framing Effect
Ainslie, G., & Haslam, N. (1992). Hyperbolic discounting.
Baum, W. M., & Rachlin, H. C. (1969). Choice as time allocation 1. Journal of the experimental analysis of behavior, 12(6), 861-874.
Baumeister, R. F., Vohs, K. D., & Tice, D. M. (2007). The strength model of self-control. Current directions in psychological science, 16(6), 351-355.
Berns, G. S., Laibson, D., & Loewenstein, G. (2007). Intertemporal choice–toward an integrative framework. Trends in cognitive sciences, 11(11), 482-488.
Benartzi, S., Beshears, J., Milkman, K. L., Sunstein, C. R., Thaler, R. H., Shankar, M., ... & Galing, S. (2017). Should governments invest more in nudging?. Psychological science, 28(8), 1041-1055.
Chapman, G. B. (1996). Temporal discounting and utility for health and money. Journal of Experimental Psychology: Learning, Memory, and Cognition, 22(3), 771.
Cook, J., Oreskes, N., Doran, P. T., Anderegg, W. R., Verheggen, B., Maibach, E. W., ... & Rice, K. (2016). Consensus on consensus: a synthesis of consensus estimates on human-caused global warming. Environmental research letters, 11(4), 048002.
Davis, J. J. (1995). The effects of message framing on response to environmental communications. Journalism & Mass Communication Quarterly, 72(2), 285-299.
Elster, J. (1979). Ulysses and the sirens: Studies in rationality and irrationality.
Frederick, S., Loewenstein, G., & O’donoghue, T. (2002). Time discounting and time preference: A critical review. Journal of economic literature, 40(2), 351-401.
Gifford, R. (2011). The dragons of inaction: psychological barriers that limit climate change mitigation and adaptation. American psychologist, 66(4), 290.
Gribbons, B., & Herman, J. (1997). True and quasi-experimental designs. ERIC/AE digest.
Gursoy, D., Ekinci, Y., Can, A. S., & Murray, J. C. (2022). Effectiveness of message framing in changing COVID-19 vaccination intentions: Moderating role of travel desire. Tourism Management, 90, 104468.
Hare, T. A., Camerer, C. F., & Rangel, A. (2009). Self-control in decision-making involves modulation of the vmPFC valuation system. Science, 324(5927), 646-648.
Holz, J. E., List, J. A., Zentner, A., Cardoza, M., & Zentner, J. (2020). The $100 million nudge: Increasing tax compliance of businesses and the self-employed using a natural field experiment (No. w27666). National Bureau of Economic Research.
Homar, A. R., & Cvelbar, L. K. (2021). The effects of framing on environmental decisions: A systematic literature review. Ecological Economics, 183, 106950.
Hulme, M. (2008). The conquering of climate: discourses of fear and their dissolution. Geographical Journal, 174(1), 5-16.
Hurlstone, M. J., Lewandowsky, S., Newell, B. R., & Sewell, B. (2014). The effect of framing and normative messages in building support for climate policies. PloS One, 9(12), e114335.
IPCC. Summary for Policymakers. In: Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group, II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, M.L. Parry, O.F. Canziani, J.P
Johnson, A., van der Meer, M. A., & Redish, A. D. (2007). Integrating hippocampus and striatum in decision-making. Current opinion in neurobiology, 17(6), 692-697.
Kalivas, P. W., & Volkow, N. D. (2005). The neural basis of addiction: a pathology of motivation and choice. American Journal of Psychiatry, 162(8), 1403-1413.
Kahneman, D. (1977). Prospect theory: An analysis of decision under risk. Journal of Political Economy, 85, 97-122.
Kahneman, D. (1979). Econ ometrica i ci. Econometrica, 47(2), 263-291.
Karlsen, R., & Andersen, A. (2019). Recommendations with a nudge. Technologies, 7(2), 45.
Kahneman, D. (2011). Thinking, fast and slow, New York, Farrar, Straus and Giroux.
Laibson, D. (1997). Golden eggs and hyperbolic discounting. The Quarterly Journal of Economics, 112(2), 443-478.
Lehner, M., Mont, O., & Heiskanen, E. (2016). Nudging–A promising tool for sustainable consumption behaviour?. Journal of cleaner production, 134, 166-177.
Leonard, T. C. (2008). Richard H. Thaler, Cass R. Sunstein, Nudge: Improving decisions about health, wealth, and happiness: Yale University Press, New Haven, CT, 2008, 293 pp, $26.00.
LI, X. M., & TAN, P. (2018). Applied research on framing effect and related techniques. Advances in Psychological Science, 26(12), 2230.
Li, Y. Framing Effects in Risky Decision Making: The Role of Immediate Emotions and Cognitive Reappraisal Strategies. Master’s Dissertation, Hunan Normal University, Hunan, China, 2020.
Mazur, J. E. (2013). An adjusting procedure for studying delayed reinforcement. In The effect of delay and of intervening events on reinforcement value (pp. 55-73). Psychology Press.
Miller, E. K., & Cohen, J. D. (2001). An integrative theory of prefrontal cortex function. Annual review of neuroscience, 24(1), 167-202.
Mora, C., Dousset, B., Caldwell, I. R., Powell, F. E., Geronimo, R. C., Bielecki, C. R., ... & Trauernicht, C. (2017). Global risk of deadly heat. Nature climate change, 7(7), 501-506.
Momsen, K., & Stoerk, T. (2014). From intention to action: Can nudges help consumers to choose renewable energy?. Energy Policy, 74, 376-382.
Ngo, C. C., Poortvliet, P. M., & Klerkx, L. (2022). The persuasiveness of gain vs. loss framed messages on farmers’ perceptions and decisions to climate change: A case study in coastal communities of Vietnam. Climate Risk Management, 35, 100409.
O'Donoghue, T., & Rabin, M. (1999). Doing it now or later. American economic review, 89(1), 103-124.
Pender, J. L. (1996). Discount rates and credit markets: Theory and evidence from rural India. Journal of development Economics, 50(2), 257-296.
Peters, J., & Büchel, C. (2010). Episodic future thinking reduces reward delay discounting through an enhancement of prefrontal-mediotemporal interactions. Neuron, 66(1), 138-148.
Peters, J., & Büchel, C. (2011). The neural mechanisms of inter-temporal decision-making: understanding variability. Trends in cognitive sciences, 15(5), 227-239.
Polasky, S., & Dampha, N. K. (2021). Discounting and global environmental change. Annual Review of Environment and Resources, 46, 691-717.
Poortinga, W., & Whitaker, L. (2018). Promoting the use of reusable coffee cups through environmental messaging, the provision of alternatives and financial incentives. Sustainability, 10(3), 873.
Qi, A., Ji, Z., Gong, Y., Yang, B., & Sun, Y. (2022). The Impact of the Gain-Loss Frame on College Students’ Willingness to Participate in the Individual Low-Carbon Behavior Rewarding System (ILBRS): The Mediating Role of Environmental Risk Perception. International Journal of Environmental Research and Public Health, 19(17), 11008.
Schubert, C. (2017). Green nudges: Do they work? Are they ethical?. Ecological economics, 132, 329-342.
Sellitto, M., Ciaramelli, E., & di Pellegrino, G. (2010). Myopic discounting of future rewards after medial orbitofrontal damage in humans. Journal of Neuroscience, 30(49), 16429-16436.
Shome, D., & Marx, S. M. (2009). The psychology of climate change communication: A guide for scientists, journalists, educators, political aides, and the interested public.
Shu, L. L., & Bazerman, M. H. (2010). Cognitive barriers to environmental action: Problems and solutions. Harvard Business School NOM Unit Working Paper, (11-046).
Spence, A., & Pidgeon, N. (2010). Framing and communicating climate change: The effects of distance and outcome frame manipulations. Global environmental change, 20(4), 656-667.
Steinhorst, J., Klöckner, C. A., & Matthies, E. (2015). Saving electricity–For the money or the environment? Risks of limiting pro-environmental spillover when using monetary framing. Journal of Environmental Psychology, 43, 125-135.
Stern, N. H. (2007). The economics of climate change: the Stern review. cambridge University press.
Sunstein, C. R. (2015). Behavioural economics, consumption and environmental protection. In Handbook of research on sustainable consumption (pp. 313-327). Edward Elgar Publishing.‏
Redelmeier, D. A., & Heller, D. N. (1993). Time preference in medical decision making and cost-effectiveness analysis. Medical Decision Making, 13(3), 212-217.
Thaler, R. (1981). Some empirical evidence on dynamic inconsistency. Economics letters, 8(3), 201-207.
Thaler, R. H., & Sunstein, C. R. (2008). Nudge: improving decisions about health. Wealth, and Happiness, 6, 14-38.
Tversky, A., & Kahneman, D. (1981). The framing of decisions and the psychology of choice. science, 211(4481), 453-458.
Tversky, A., & Kahneman, D. (1992). Advances in prospect theory: Cumulative representation of uncertainty. Journal of Risk and uncertainty, 5, 297-323.
Wiest, S. L., Raymond, L., & Clawson, R. A. (2015). Framing, partisan predispositions, and public opinion on climate change. Global environmental change, 31, 187-198.
World Bank. (2022). Driving Revolutionary Ideas into Practice: Infrastructure for Climate Change, Poverty Reduction 2.0, Human Development on Mobile Government, Disrupted. World Bank.