پژوهش ها و چشم اندازهای اقتصادی

پژوهش ها و چشم اندازهای اقتصادی

ارزیابی اثرات مالیات کربن بر بخش صنعت در کشورهای توسعه‌یافته و درحال توسعه با استفاده از یک مدل تعادل عمومی پویا

نویسندگان
1 کارشناسی ارشد اقتصاد، دانشگاه شهید باهنر کرمان، کرمان، ایران
2 دانشیار اقتصاد، گروه اقتصاد، دانشگاه شهید باهنر کرمان، کرمان، ایران
3 استاد اقتصاد، گروه اقتصاد، دانشگاه شهید باهنر کرمان، کرمان، ایران
4 دانشیار اقتصاد انرژی، گروه اقتصاد، دانشگاه شهید باهنر کرمان، کرمان، ایران
چکیده
مالیات کربن، یکی از مهمترین ابزارهای سیاستگذاری در حوزۀ انرژی است که می‏ تواند از طریق تغییر در رفتار مصرف‏ کننده و تولیدکننده، پیامدهای مثبت اقتصادی و زیست‏ محیطی بههمراه داشته باشد. هدف از این مطالعه، بررسی آثار مالیات کربن بر صنایع انرژی ‏بر و غیرانرژی‏ بر در مناطق مختلف جهان است. برای دستیابی به این هدف، از یک مدل CGE پویا استفاده شده است تا بررسی شود که مالیات کربن چگونه بر قیمت کالاها، تولید، واردات و صادرات صنایع اثرگذار است. تمایز این پژوهش با مطالعاتی که تاکنون صورت گرفته، در این است که درآمد سرانه به‌عنوان یکی از عوامل مهم در نحوۀ اثرگذاری مالیات کربن در مد‌ل‌سازی CGE لحاظ شده است. به‌همین منظور، مناطق به پنج گروه درآمدی مختلف براساس آخرین تقسیم ‏بندی بانک جهانی تجمیع، و سناریوهای سیاستی طبق آن اجرا شده است. نتایج نشان می‏دهد که مالیات کربن در تمامی سناریو‏ها منجر به افزایش قیمت کالاهای با شدت انرژی بالا در تمام مناطق می ‏شود و قیمت کالاهای با شدت انرژی پایین ‌جز در گروه کشورهای توسعه‏ یافته و با درآمد بالا، کاهش می‏ یابد. همچنین تولید در بخش انرژیبر وغیرانرژیبر‏ به‌طور متوسط با کاهش روبرو است. واردات در بخش انرژیبر، بجز گروه کشورهای با درآمد بالاتر از متوسط برای سایر گروه‏ها کاهش می‏ یابد و در بخش غیرانرژی ‏بر نیز با کاهش واردات روبرو هستیم. ‌تأثیرپذیری صادرات نیز در بخش انرژیبر در جهت کاهش است و در بخش غیرانرژیبر به‌طور متوسط افزایش می‏ یابد. براساس نتایج به‌دست آمده، این مطالعه راهی برای طراحی چارچوب سیاست مالیات کربن در مناطق مختلف با ساختار صنعتی متفاوت برای گذار به انتشار خالص صفر ایجاد کرده است
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Carbon Tax and the Industrial Sector in Developed and Developing Countries A Dynamic General Equilibrium Model

نویسندگان English

kolsum afshoon 1
mehdi nejati 2
Seyed Abdulmajid Jalaee 3
zeinolabedin sadeghi 4
1 Master of Economics, Shahid Bahonar University of Kerman, Kerman, Iran
2 Associate Professor, Shahid Bahonar University of Kerman, Kerman, Iran
3 Professor, Shahid Bahonar University of Kerman, Kerman, Iran
4 Associate Professor, Shahid Bahonar University of Kerman, Kerman, Iran
چکیده English

Aim and Introduction

Carbon tax is one of the most important policy tools in the field of energy, which is applied to the consumption, production or distribution of fossil energy, including oil products, coal, natural gas, etc. The purpose of carbon tax is to reduce economic and environmental effects caused by pollution by including environmental costs in the price of goods and services. This policy tool can bring positive economic and environmental consequences through changes in consumer and producer behavior. The purpose of this study is to investigate the effects of carbon tax on energy-intensive and non-energy-intensive industries in different regions of the world.

Methodology

Since a CGE model can describe the interactions between different factors in macroeconomic systems and examine the effects of a policy at the global level, therefore, a dynamic multi-regional CGE model has been used to better understand the policy effects.

Results and Discussion

The results show that the carbon tax in all scenarios leads to an increase in the price of goods with high energy intensity in all regions, and the price of goods with low energy intensity decreases, except in the group of developed and high-income countries. Production in the energy-intensive and non-energy-intensive sectors is facing an average decrease. Imports in the energy-intensive sector, except for the group of countries with higher-than-average income, will decrease for other groups, and in the non-energy-intensive sector as well.

Conclusion

To investigate the effect of carbon tax on the industries of different countries, first the countries of the world were grouped into 5 regions based on the criteria of the World Bank and then 5 policy scenarios based on the report of the International Energy Agency were implemented in each region. For modeling, a dynamic calculable general equilibrium model was used in order to achieve more accurate results, and then important industrial consequences were obtained by solving the model. From the results of this research and the studies that have been carried out so far, it can be seen that what is decisive in the consequences of the implementation of the carbon tax is the region and the country implementing the policy.

Based on this, the policy makers, considering the national and regional conditions and being aware of the possible effects of the policy, can include assumptions in the design and implementation of the policy in order to achieve efficient and appropriate conditions in the implementation of the carbon tax by reducing the negative effects. Based on the results of the research, it was observed that due to the differences in the regions, the macroeconomic effects in the industry will be different for different regions of the world. Therefore, one of the important points in the effort to bring the emission of greenhouse gases to zero is to pay attention to the differences in industries in different countries and the coordinated actions of the governments with each other for technical and financial support in order to accelerate the transformation of clean energy and reach the commitment goal. Since energy consumption is mainly related to production activities, especially production from energy-intensive industries, reducing greenhouse gas emissions from industry takes more time than some economic sectors. For this purpose, governments should present regular and specific programs to attract investments in the long term so that they can guide industries in the direction of deploying the most efficient technologies. The governments that implement carbon tax policies can also use the collected tax revenues to strengthen energy innovation. Therefore, industries that use unclean energy sources as production inputs, by upgrading production technologies, in addition to reducing production costs, can specialize in producing clean products

کلیدواژه‌ها English

Carbon Tax
Industry
Developing Countries
Developed countries
CGE Model
1. Allan, G., Lecca, P., McGregor, P., & Swales, K. (2014). The economic and environmental impact of a carbon tax for Scotland: A computable general equilibrium analysis. Ecological economics, 100, 40-50. 10.1016/j.ecolecon.2014.01.012.
2. An, Y., & Zhai, X. (2020). SVR-DEA model of carbon tax pricing for China's thermal power industry. Science of The Total Environment, 734, 139438. 10.1016/j.scitotenv.2020.139438.
3. An, Y., Zhou, D., Wang, Q., Shi, X., & Taghizadeh-Hesary, F. (2022). Mitigating size bias for carbon pricing in small Asia-Pacific countries: Increasing block carbon tax. Energy Policy, 161, 112771. 10.1016/j.enpol.2021.112771.
4. Balaghi inalo, Y., Nejati, M., Bahmani, M., Jalaei, S. A. (2023). Economic and environmental effects of the trade access letter of Iran and the Eurasian Economic :union:: GDyn-E characteristics. Environmental Science and Technology, 1(1), 141. (In Persian).
5. Bouckaert, S., Pales, A. F., McGlade, C., Remme, U., Wanner, B., Varro, L., ... & Spencer, T. (2021). Net zero by 2050: A roadmap for the global energy sector.
6. Brockmeier, M. (2001). A graphical exposition of the GTAP model (No. 1236-2016-101374). 10.21642/GTAP.TP08.
7. Burfisher, M. E. (2021). Introduction to computable general equilibrium models. Cambridge University Press.
8. Burniaux, J. M., & Truong, T. P. (2002). GTAP-E: an energy-environmental version of the GTAP model. GTAP technical papers, 18. 10.21642/GTAP.TP16.
9. Cao, J., Dai, H., Li, S., Guo, C., Ho, M., Cai, W., ... & Zhang, X. (2021). The general equilibrium impacts of carbon tax policy in China: A multi-model comparison. Energy Economics, 99, 105284. 10.1016/j.eneco.2021.105284.
10. Chen, S. (2013). What is the potential impact of a taxation system reform on carbon abatement and industrial growth in China?. Economic systems, 37(3), 369-386. 10.1016/j.ecosys.2013.03.001.
11. Chen, Q., Zha, D., & Salman, M. (2022). The influence of carbon tax on CO2 rebound effect and welfare in Chinese households. Energy Policy, 168, 113103. 10.1016/j.enpol.2022.113103.
12. Cherniwchan, J., & Najjar, N. (2022). Do environmental regulations affect the decision to export?. American Economic Journal: Economic Policy, 14(2), 125-160. 10.1257/pol.20200290.
13. Freire-González, J., & Ho, M. S. (2019). Carbon taxes and the double dividend hypothesis in a recursive-dynamic CGE model for Spain. Economic Systems Research, 31(2), 267-284. 10.1080/09535314.2019.1568969

14. Fu, K., Li, Y., Mao, H., & Miao, Z. (2023). Firms’ production and green technology strategies: The role of emission asymmetry and carbon taxes. European Journal of Operational Research, 305(3), 1100-1112. 10.1016/j.ejor.2022.06.024.
15. Fu, M., Gu, L., Zhen, Z., Sun, M., & Tian, L. (2020). Optimal carbon tax income distribution and health welfare spillover effect based on health factors. Applied Energy, 276, 115475. 10.1016/j.apenergy.2020.115475.
16. Guo, Y., & Qin, Z. (2023). Impact of carbon tax on energy sector segmentation under different closures: A case study of China via CGE model. Energy Reports, 9, 500-510. 10.1016/j.egyr.2023.04.206.
17. Guo, Z., Zhang, X., Zheng, Y., & Rao, R. (2014). Exploring the impacts of a carbon tax on the Chinese economy using a CGE model with a detailed disaggregation of energy sectors. Energy Economics, 45, 455-462. 10.1016/j.eneco.2014.08.016.
18. Hájek, M., Zimmermannová, J., Helman, K., & Rozenský, L. (2019). Analysis of carbon tax efficiency in energy industries of selected EU countries. Energy Policy, 134, 110955. 10.1016/j.enpol.2019.110955.
19. Hertel, T. W. (1997). Global trade analysis: modeling and applications. Cambridge university press. 10.1017/CBO9781139174688.
20. Hertel, T. W., Peterson, E. B., Surry, Y., Preckel, P. V., & Tsigas, M. E. (1990). Implicit additivity as a strategy for restricting the parameter space in CGE models (No. 1974-2018-2312). 10.22004/ag.econ.270868.
21. Hertel, T. W., & Tsigas, M. E. (1997). Structure of GTAP. Global Trade Analysis: modeling and applications, 13-73.
22. Hillebrand, E., & Hillebrand, M. (2023). Who pays the bill? climate change, taxes, and transfers in a multi-region growth model. Journal of Economic Dynamics and Control, 104695. 10.1016/j.jedc.2023.104695.
23. Hinterlang, N., Martin, A., Röhe, O., Stähler, N., & Strobel, J. (2022). Using energy and emissions taxation to finance labor tax reductions in a multi-sector economy. Energy Economics, 115, 106381. 10.1016/j.eneco.2022.106381.
24. Hu, H., Dong, W., & Zhou, Q. (2021). A comparative study on the environmental and economic effects of a resource tax and carbon tax in China: Analysis based on the computable general equilibrium model. Energy Policy, 156, 112460. 10.1016/j.enpol.2021.112460.
25. Hu, X., Yang, Z., Sun, J., & Zhang, Y. (2020). Carbon tax or cap-and-trade: Which is more viable for Chinese remanufacturing industry?. Journal of Cleaner Production, 243, 118606. 10.1016/j.jclepro.2019.118606.
26. Ismail, K., Lubwama, M., Kirabira, J. B., & Sebbit, A. (2023). Development of a sustainable low-carbon footprint for the Greater Kampala Metropolitan Area: The efficacy of a TIMES/CGE hybrid framework. Energy Reports, 9, 19-36. 10.1016/j.egyr.2022.11.144.
27. Jia, Z., Lin, B., & Liu, X. (2023). Rethinking the equity and efficiency of carbon tax: A novel perspective. Applied Energy, 346, 121347. 10.1016/j.apenergy.2023.121347.
28. Jia, Z., Wen, S., & Sun, Z. (2022). Current relationship between coal consumption and the economic development and China's future carbon mitigation policies. Energy Policy, 162, 112812. 10.1016/j.enpol.2022.112812.
29. Khastar, M., Aslani, A., Nejati, M., Bekhrad, K., & Naaranoja, M. (2020). Evaluation of the carbon tax effects on the structure of Finnish industries: A computable general equilibrium analysis. Sustainable Energy Technologies and Assessments, 37, 100611. 10.1016/j.seta.2019.100611.
30. Kumbhakar, S. C., Badunenko, O., & Willox, M. (2022). Do carbon taxes affect economic and environmental efficiency? The case of British Columbia’s manufacturing plants. Energy Economics, 115, 106359. 10.1016/j.eneco.2022.106359.
31. Liang, Q. M., Fan, Y., & Wei, Y. M. (2007). Carbon taxation policy in China: How to protect energy-and trade-intensive sectors?. Journal of Policy Modeling, 29(2), 311-333. 10.1016/j.jpolmod.2006.11.001.
32. Lin, B., & Jia, Z. (2018). The energy, environmental and economic impacts of carbon tax rate and taxation industry: A CGE based study in China. Energy, 159, 558-568. 10.1016/j.energy.2018.06.167.
33. Lin, B., & Jia, Z. (2019). How does tax system on energy industries affect energy demand, CO2 emissions, and economy in China?. Energy Economics, 84, 104496. 10.1016/j.eneco.2019.104496.
34. Liu, N., Yao, X., Wan, F., & Han, Y. (2023). Are tax revenue recycling schemes based on industry-differentiated carbon tax conducive to realizing the “double dividend”?. Energy Economics, 106814. 10.1016/j.eneco.2023.106814.
35. Mardones, C. (2022). Pigouvian taxes to internalize environmental damages from Chilean mining− A computable general equilibrium analysis. Journal of Cleaner Production, 362, 132359. 10.1016/j.jclepro.2022.132359.
36. Matsumoto, S. (2022). How will a carbon tax affect household energy source combination?. Energy Strategy Reviews, 40, 100823. 10.1016/j.esr.2022.100823.
37. Meng, X., & Yu, Y. (2023). Can renewable energy portfolio standards and carbon tax policies promote carbon emission reduction in China's power industry?. Energy Policy, 174, 113461. 10.1016/j.enpol.2023.113461.
38. Najjar, N., & Cherniwchan, J. (2021). Environmental regulations and the cleanup of manufacturing: plant-level evidence. Review of Economics and Statistics, 103(3), 476-491. 10.1162/rest_a_00904.
39. Nong, D. (2020). Development of the electricity-environmental policy CGE model (GTAP-E-PowerS): A case of the carbon tax in South Africa. Energy Policy, 140, 111375. 10.1016/j.enpol.2020.111375.
40. Nong, D., Simshauser, P., & Nguyen, D. B. (2021). Greenhouse gas emissions vs CO2 emissions: Comparative analysis of a global carbon tax. Applied Energy, 298, 117223. 10.1016/j.apenergy.2021.117223.
41. Ojha, V. P., Pohit, S., & Ghosh, J. (2020). Recycling carbon tax for inclusive green growth: A CGE analysis of India. Energy Policy, 144, 111708. 10.1016/j.enpol.2020.111708.
42. O’Ryan, R., Nasirov, S., & Osorio, H. (2023). Assessment of the potential impacts of a carbon tax in Chile using dynamic CGE model. Journal of Cleaner Production, 403, 136694. 10.1016/j.jclepro.2023.136694.
43. Peters, J. C. (2016). GTAP-E-Power: an electricity-detailed economy-wide model. Journal of Global Economic Analysis, 1(2), 156-187. 10.21642/JGEA.010204AF.
44. Peters, J. C., & Hertel, T. W. (2017). Achieving the Clean Power Plan 2030 CO2 target with the new normal in natural gas prices. The Energy Journal, 38(5). 10.5547/01956574.38.5.jpet.
45. Rajabi, M. M. (2023). Carbon tax accompanied by a revenue recycling increases Australia's GDP: A dynamic recursive CGE approach. Journal of Cleaner Production, 418, 138187. 10.1016/j.jclepro.2023.138187.
46. Ross, M. T. (2018). The future of the electricity industry: Implications of trends and taxes. Energy economics, 73, 393-409. 10.1016/j.eneco.2018.03.022.
47. Rustico, E., & Dimitrov, S. (2022). Environmental taxation: The impact of carbon tax policy commitment on technology choice and social welfare. International Journal of Production Economics, 243, 108328. 10.1016/j.ijpe.2021.108328.
48. Shahbaz, M., Topcu, B. A., Sarıgül, S. S., & Vo, X. V. (2021). The effect of financial development on renewable energy demand: The case of developing countries. Renewable Energy, 178, 1370-1380. 10.1016/j.renene.2021.06.121.
49. Sinha, A. (2015). Modeling energy efficiency and economic growth: evidences from India. International Journal of Energy Economics and Policy, 5(1), 96-104
50. Tan, R., & Lin, B. (2020). The influence of carbon tax on the ecological efficiency of China's energy intensive industries—A inter-fuel and inter-factor substitution perspective. Journal of environmental management, 261, 110252. 10.1016/j.jenvman.2020.110252.
51. Tian, X., Dai, H., Geng, Y., Huang, Z., Masui, T., & Fujita, T. (2017). The effects of carbon reduction on sectoral competitiveness in China: A case of Shanghai. Applied Energy, 197, 270-278. 10.1016/j.apenergy.2017.04.026.
52. Timilsina, G. R., Csordás, S., & Mevel, S. (2011). When does a carbon tax on fossil fuels stimulate biofuels?. Ecological Economics, 70(12), 2400-2415. 10.1016/j.ecolecon.2011.07.022.
53. Trevino-Martinez, S., Sawhney, R., & Shylo, O. (2022). Energy-carbon footprint optimization in sequence-dependent production scheduling. Applied Energy, 315, 118949. 10.1016/j.apenergy.2022.118949.
54. Turner, K., Alabi, O., Katris, A., & Swales, K. (2022). The importance of labour market responses, competitiveness impacts, and revenue recycling in determining the political economy costs of broad carbon taxation in the UK. Energy Economics, 116, 106393. 10.1016/j.eneco.2022.106393.
55. Wang, T., Umar, M., Li, M., & Shan, S. (2023). Green finance and clean taxes are the ways to curb carbon emissions: An OECD experience. Energy Economics, 124, 106842. 10.1016/j.eneco.2023.106842.
56. Wesseh Jr, P. K., Lin, B., & Atsagli, P. (2017). Carbon taxes, industrial production, welfare and the environment. Energy, 123, 305-313. 10.1016/j.energy.2017.01.139.
57. Xu, C., Wang, C., & Huang, R. (2020). Impacts of horizontal integration on social welfare under the interaction of carbon tax and green subsidies. International Journal of Production Economics, 222, 107506. 10.1016/j.ijpe.2019.09.027.
58. Xu, H., Pan, X., Li, J., Feng, S., & Guo, S. (2023). Comparing the impacts of carbon tax and carbon emission trading, which regulation is more effective?. Journal of Environmental Management, 330, 117156. 10.1016/j.jenvman.2022.117156.
59. Zhai, M., Huang, G., Liu, L., Guo, Z., & Su, S. (2021). Segmented carbon tax may significantly affect the regional and national economy and environment-a CGE-based analysis for Guangdong Province. Energy, 231, 120958. 10.1016/j.energy.2021.120958.
60. Zhang, Y., Jiang, S., Lin, X., Qi, L., & Sharp, B. (2023). Income distribution effect of carbon pricing mechanism under China's carbon peak target: CGE-based assessments. Environmental Impact Assessment Review, 101, 107149. 10.1016/j.eiar.2023.107149.
61. Zhao, Y. H. (2011). The study of effect of carbon tax on the international competitiveness of energy-intensive industries: an empirical analysis of OECD 21 countries, 1992-2008. Energy Procedia, 5, 1291-1302. 10.1016/j.egypro.2011.03.225.
62. Zhu, X., Zeng, A., Zhong, M., Huang, J., & Qu, H. (2019). Multiple impacts of environmental regulation on the steel industry in China: A recursive dynamic steel industry chain CGE analysis. Journal of Cleaner Production, 210, 490-504. 10.1016/j.jclepro.2018.10.350.
63. Zou, L., Xue, J., Fox, A., & Meng, B. (2018). The emissions reduction effect and economic impact of an energy tax vs. a carbon tax in China: a dynamic CGE model analysis. The Singapore Economic Review, 63(02), 339-387. 10.1142/S021759081740015X.