پژوهش ها و چشم اندازهای اقتصادی

پژوهش ها و چشم اندازهای اقتصادی

پیدایش مناطق اقتصادی بین‌المللی در راستای انسجام اقتصاد جهانی

نویسنده
دانشیار گروه اقتصاد، دانشگاه آزاد اسلامی، واحد نراق، نراق، ایران
چکیده
شکل‌گیری جوامع/مناطق اقتصادی می‌تواند راهبردی برای کاهش محدودیت‌ها و افزایش تعاملات تجاری و امنیت آن از طریق ارتباط نزدیک میان کشورها باشد. نظریه وابستگی به منابع بیان می‌دارد که اگر بنگاهی تا حد زیادی به بازار موردنظر وابسته باشد، آنگاه به‌وسیله بازیگران در آن بازار محدود خواهد شد و نظریه شبکه پیچیده ابزار مفیدی برای تجزیه و تحلیل تعاملات مابین کشورها به‌طور سیستماتیک است، به‌ویژه زمانی که تعداد کشورها و پیوندهای مابین آ‌‌ن‌ها زیاد باشد. بنابراین هدف پژوهش، بررسی و شناخت نقش نظریه وابستگی به منابع و نظریه شبکه پیچیده در شکل‌گیری مناطق اقتصادی بین‌المللی در راستای یکپارچگی اقتصاد جهانی، در نظر گرفته شد. داده‌های متعیرهای پژوهش از کشورهای فعال در تجارت بین‌المللی و براساس در دسترس بودن داده‌های COMTRADE سازمان ملل در دوره زمانی 1390 1400 استخراج گردید که به‌دلیل حجم زیاد داده‌ها، 22 کشور به‌عنوان نمونه انتخاب شدند که حجم تجارت حداکثری از کل این تجارت بین‌الملل را به خود اختصاص داده‌اند. جهت تجزیه و تحلیل داده‌ها و برآورد مد‌‌ل‌ها از رگرسیون دوجمله‌ای منفی استفاده گردید. نتایج نشان داد: عامل شریک تجاری تأثیر مثبتی بر شکل‌گیری جوامع تجاری بین‌المللی دارد، یعنی زمانی که کشوری با تعداد زیادی از شرکای تجاری همکاری می‌کند یا موقعیت برتر در شبکه تجاری بین‌المللی داشته باشد، احتمال بیشتری دارد که کشورهای دیگر مناطق یکسانی با آن کشور تشکیل دهند. همچنین وقتی که کشوری خود را وابسته به منابع کشورهای دیگر می‌داند، احتمال شکل‌گیری جامعهای مشابه با دیگر کشورها افزایش پیدا می‌کند. درنهایت، موقعیت در شبکه نقش مثبتی در تنظیم روابط بین وابستگی به منابع و مناطق اقتصادی بین‌المللی ایفا می‌کند.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

International Economic Zones and Integration of Global Economy

نویسنده English

mostafa heidari haratemeh
Associate Professor Department of Economics, Islamic Azad University, Naragh Branch, Naragh, Iran.
چکیده English

Introduction

In international trade network, countries are classified into different societies. These societies are formed based on commercial relations. Countries that are in the same society have close trade relations, while countries that are in different societies have much weaker trade relations, which shows that classification phenomenon has a meaningful effect on the field of international trade of resources. These societies also significantly promote free trade and improve commercial security and create favorable business conditions. For countries that rely heavily on foreign resources, establishing trade zones or joining a trade zone for their long-term development is of paramount importance. The division of societies in the trade network is based on geographical location or gross domestic product, not regional trade agreements. Some researchers have investigated the evolutionary characteristics of societies and analyzed the sustainability of international trade. In addition, some researchers argue that societies increase their commercial power by stabilizing the flow of resources in international trade, and their international position improves through cooperation with other countries. Several studies have provided a lot of knowledge about the society and the structural features of the international trade network, but few studies have dealt with the formation of trade areas and what promotes the formation of a trade area. The formation of trade communities/regions can be a strategy to reduce restrictions and increase trade interactions and its security through close communication between countries. Therefore, the current study can become more necessary in the situation where the current international business cooperation has become more and more important. Therefore, two main questions arise that need to be answered: 1) How are business areas formed, and 2) What factors influence the formation of business areas? Based on the studies, resource dependence theory and complex network theory can explain these questions well. Resource dependence theory states that if a firm is highly dependent on the target market, then it will be constrained by the actors in that market. Complex network theory is also a useful tool for systematically analyzing interactions between countries, especially when there are many countries involved and strong links between them exists. The purpose in fact was to investigate and recognize the influence of the resource dependence theory and the complex network theory in the formation of international trade areas in line with the integration of global economy.

Methodology

The data were extracted from the 22 countries active in international trade and based on the availability of the data of the official COMTRADE database of the United Nations in the period of 2011-2021. They account for the entire international trade. In order to analyze the data and estimate the models, negative binomial regression was used because when there are countable and discrete data as the response variable, simple linear regression is not a suitable fitting method. So, Poisson regression was applied, which is considered a method in "generalized linear models" where the probability function for the "response variable" is considered to be "Poisson distribution" and suitable for count data.

Findings

The trade partner factor has a positive effect on the formation of international trade communities, that is, when a country cooperates with a large number of trade partners or has a superior position in the international trade network, it is more likely that other countries will form the same pattern. Therefore, when a country considers itself dependent on the resources of other countries, the possibility of forming a similar society will increase. Finally, network position plays a positive role in moderating the relationship between resource dependence and international trade areas.

Discussion and Conclusion

Based on resource dependence and complex network theory, and analyzing the decisive factors affecting the accession process of a country to the same trade zones, the dependence of the country's imports on the external environment is an integral factor in joining a country to the same trade zones. In fact, in choosing partners for the formation of commercial zones, countries attach great importance to the ability to provide resources of commercial partners. On the other hand, position of the network plays a positive role in the formation of a business community. Countries with a higher network position can not only access resources or reach the target market faster, but also have more control over the flow of resources. Therefore, it is more likely that countries will establish closer trade relations with countries that have a higher network position in order to increase their economic power. The more central a country's network position is, the easier it is to choose to join larger trade areas with other countries. Also, according to the resource dependence theory, the more central a country's network position is, the more likely it is to join the same trade areas as other countries. Network and resource considerations both simultaneously play a role in the strategic choice of national trade. In the case of countries that have the same resource abundance, a country can choose to form the same society as countries that have a more central network position. Finally, due to the development of export markets for domestic products, countries are easily affected by the network position. This will enable them to choose other countries that are in a more central network position to form the same society, rather than trying to trade among them. Based on the economic freedom factor and the diversity of the importing country, countries that can strengthen resource trade, can reduce or manage their dependence on other countries. In addition, they can balance the inventory and production of global resources.

کلیدواژه‌ها English

Complex Network Theory
Economic Zones
International Trade
Resource Dependence Theory
References
1. Agranoff, R., Clift, S., 2013. Burt, R.S. (1992). Structural holes: the social structure of competition. Ca mbridge, MA, Harvard.
2. An, H., Gao, X., Fang, W., Ding, Y., Zhong, W., 2014a. Research on patterns in the fl uctuation of the comovement between crude oil futures and spot prices: a complex network approach. Appl. Energy 136, 1067 –1075.
3. An, H., Zhong, W., Chen, Y., Li, H., Gao, X., 2014b. Features and evolution of international crude oil trade relationships: a trading-based network analysis. Energy 74,254 –259.
4. An, Q., An, H., Wang, L., Gao, X., Lv, N., 2015. Analysis of embodied exergy flow between Chinese industries based on network theory. Ecol. Model. 318, 26 –35.
5. Anand, B.N., Khanna, T., 2000. Do firms learn to create value? The case of alliances. Strateg. Manag. J. 21, 295 –315.
6. Anderson, J.C., Narus, J.A., 1990. A model of distributor firm and manufacturer firm working partnerships. J. Mark. 54, 42 –58.
7. Barber, M.J., 2007. Modularity and community detection in bipartite networks. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 76, 066102.
8. Barigozzi, M., Fagiolo, G., Mangioni, G., 2011. Community Structure in the Multi-network of International Trade. Springer Berlin Heidelberg.
9. Brada, J.C., Méndez, J.A., 1985. Economic integration among developed, developing and centrally planned economies: a comparative analysis. Rev. Econ. Stat. 67, 549 –556.
10. Brandes, U., 2001. A faster algorithm for betweenness centrality. J. Math. Sociol. 25, 163 –177.
11. Burt, R.S., 2010. Structural Holes: The Social Structure of Competition. Harvard University Press.
12. Chai, R., Chen, M., Chen, Q., Gao, Y., 2017. An optimal joint user association and power allocation algorithm for secrecy information transmission in heterogeneous networks. Wirel. Commun. Mob. Comput. 2017, 13.
13. Chang, T.Y., Hsu, T.C., Hong, Y.W.P., 2010. Exploiting data-dependent transmission control and MAC timing information for distributed detection in sensor networks. IEEE Trans. Signal Process. 58, 1369 –1382.
14. Dong, D., An, H., Huang, S., 2017. The transfer of embodied carbon in copper international trade: an industry chain perspective. Resour. Policy 52, 173 –180.
15. Dyer, J.H., Singh, H., 1998. The relational view: cooperative strategy and sources of interorganizational competitive advantage. Acad. Manag. Rev. 23, 660 –679.
16. Fan, Y., Ren, S., Cai, H., Cui, X., 2014. The state's role and position in international trade: a complex network perspective ☆. Econ. Model. 39, 71 –81.
17. Feijoo, F., Huppmann, D., Sakiyama, L., Siddiqui, S., 2016. North American natural gas model: impact of cross-border trade with Mexico. Energy 112, 1084 –1095.
18. Foerster, M., 2016. Dynamics of Strategic Information Transmission in Social Networks. Social Science Electronic Publishing.
19. Freeman, L.C., 1977. A set of measures of centrality based on betweenness. Sociometry 40, 35 –41.
20. Gao, X., An, H., Fang, W., Li, H., Sun, X., 2014. The transmission of fluctuant patterns of the forex burden based on international crude oil prices. Energy 73, 380 –386.
21. Gao, X., Fang, W., An, F., Wang, Y., 2017. Detecting method for crude oil price fluctuation mechanism under different periodic time series. Appl. Energy 192, 201 –212.
22. Garlaschelli, D., Matteo, T.D., Aste, T., Caldarelli, G., Loffredo, M.I., 2007. Interplay between topology and dynamics in the World Trade Web. Eur. Phys. J. B 57,159 –164.
23. Guan, Q., An, H., Gao, X., Huang, S., Li, H., 2016. Estimating potential trade links in the international crude oil trade: a link prediction approach. Energy 102, 406 –415.
24. Gulati, Ranjay, Gargiulo, Martin, 1997. Where do interorganizational networks come from? Am. J. Sociol. 104 (1439-1438).
25. Hasson, J.A., Tinbergen, J., 1962. Shaping the world economy: suggestions for an international economic policy. Economica 31, 327.
26. Haunschild, P.R., Beckman, C.M., 1998. When do interlocks matter?: alternate sources of information and interlock influence. Adm. Sci. Q. 43, 815 –844.
27. Hillman, A.J., Withers, M.C., Collins, B.J., 2009. Resource dependence theory: a review. J. Manag. 35, 1404 –1427.
28. Hinkelman, E.G., Shippey, K.C., 2002. Dictionary of International Trade: Handbook of the Global Trade Community Includes 19 Key Appendices.
29. Hoymann, C., Wiemann, H., 2014. Controlling a transmission of information in a wireless communication network with a relay node. US.
30. Huang, S., An, H., Viglia, S., Buonocore, E., Fang, W., Ulgiati, S., 2017. Revisiting ChinaAfrica trade from an environmental perspective. J. Clean. Prod. 167, 553 –570.
31. JF Brakeland, E.T., 1997. Safety measures in international trade in goods: a community viewpoint. ResearchGate.
32. Ji, Q., Zhang, H.Y., Fan, Y., 2014. Identification of global oil trade patterns: an empirical research based on complex network theory. Energy Convers. Manag. 85, 856 –865.
33. Kale, P., Dyer, J.H., Singh, H., 2002. Alliance capability, stock market response, and long ‐term alliance success: the role of the alliance function. Strateg. Manag. J. 23, 747 –767.
34. Kuznets, S., 2002. Economic growth and income inequality. Am. Econ. Rev. 55, 1 –28.
35. Leicht, E.A., Newman, M.E.J., 2008. Community structure in directed networks. Phys. Rev. Lett. 100, 118703.
36. Li, H., An, H., Wang, Y., Huang, J., Gao, X., 2016. Evolutionary features of academic articles co-keyword network and keywords co-occurrence network: based on twomode affiliation network. Phys. A: Stat. Mech. Appl. 450, 657 –669.
37. Linnemann, H., 1966. An Econometric Study of International Trade Flows. North-Holland Pub. Co.
38. Meo, P.D., Ferrara, E., Fiumara, G., Provetti, A., Flickr, O.C., Zhang, Y., Wang, J.Z.J., Wang, Y., Zhou, L., Kaza, S., 2008. Fast unfolding of communities in large networks. J. Stat. Mech. Theory Exp. 2008, 155 –168.
39. Merchant, H., Schendel, D., 2000. How do international joint ventures create shareholder value? Strateg. Manag. J. 21, 723 –737.
40. Milo, R., Shenorr, S., Itzkovitz, S., Kashtan, N., Chklovskii, D., Alon, U., 2002. Network motifs: simple building blocks of complex networks. Science 298.
41. Neter, J., Kutner, M.H., Nachtsheim, C.J., Wasserman, W., 1985. Applied linear statistical models. J. Am. Stat. Assoc. 103, 19 –32.
42. Newman, M.E.J., 2004. Fast algorithm for detecting community structure in networks. Phys. Rev. E 69, 066133.
43. Ozmel, U., Reuer, J.J., Gulati, R., 2013. Signals across multiple networks:: how venture capital and alliance networks affect interorganizational collaboration. Acad. Manag. J. 56, 852 –866.
44. Pfeffer, J., Salancik, G.R., 2003. The External Control of Organizations: A Resource Dependence Perspective. 23. Social Science Electronic Publishing, pp. 123 –133.
45. Prell, C., Sun, L., Feng, K., Myroniuk, T.W., 2015. Inequalities in global trade: a crosscountry comparison of trade network position, economic wealth, pollution and mortality. Plos One 10, e0144453.
46. Qin, Z., Zhang, J., Wang, J., 2008. Enhanced reliable transmission control protocol for spatial information networks. J. Commun. 82, 130 –143.
47. Rubinov, M., Sporns, O., 2010. Complex network measures of brain connectivity: uses and interpretations. Neuroimage 52, 1059 –1069.
48. Sabidussi, G., 1966. The centrality index of a graph. Psychometrika 31, 581 –603.
49. Schwarz, A.J., Gozzi, A., Bifone, A., 2008. Community structure and modularity in networks of correlated brain activity. Magn. Reson. Imaging 26, 914.
50. Shipilov, A.V., 2009. Firm scope experience, historic multimarket contact with partners, centrality, and the relationship between structural holes and performance. Organ. Sci. 20, 85 –106.
51. Smith, S.M., Dorward, P.T., 2014. Nationalised large-scale mining, trade :union:s and community representation: perspectives from Northern Madagascar. Resour. Policy 40, 31 –41.
52. Sonora, R.J., 2008. On the impacts of economic freedom on International trade flows: asymmetries and Freedom components. General. Inf. Tehseen, S., Sajilan, S., 2016. Network competence based on resource-based view and resource dependence theory. Int. J. Trade Glob. Mark. 9, 60 –82.
53. Trojan, C., 1986. [Milk policy and the role of the Community in the international trade]. [German]. Molkerei Zeitung.
54. Tzekina, I., Danthi, K., Rockmore, D.N., 2008. Evolution of community structure in the world trade web. Eur. Phys. J. B 63, 541 –545.
55. Vickmajors, T.J., Priscu, J.C., Amaralzettler, L.A., 2014. Modular community structure suggests metabolic plasticity during the transition to polar night in ice-covered Antarctic lakes. ISME J. 8, 778.
56. Westphal, J.D., Boivie, S., Chng, D.H.M., 2006. The strategic impetus for social network ties: reconstituting broken CEO friendship ties. Strateg. Manag. J. 27, 425 –445.
57. Xia, J., Wang, Y., Lin, Y., Yang, H., Li, S., 2016. Alliance formation in the midst of market and network: insights from resource dependence and network perspectives. J. Manag.
58. Yin, X., Shanley, M., 2008. Industry determinants of the "Merger versus Alliance" decision. Acad. Manag. Rev. 33, 473 –491.
59. Ying, R.S.C.X.F., 2013. Analysis of China's Position in International Trade Based on a Complex Network Perspective. Journal of Beijing Normal University.
60. Zhang, H.Y., Ji, Q., Fan, Y., 2014. Competition, transmission and pattern evolution: a network analysis of global oil trade. Energy Policy 73, 312 –322.
61. Zheng, Y., Xia, J., 2017. Resource dependence and network relations: a test of venture capital investment termination in China. J. Manag. Stud.
62. Zhong, W., An, H., Gao, X., Sun, X., 2014. The evolution of communities in the international oil trade network. Phys. A Stat. Mech. Appl. 413, 42 –52.
63. Zhong, W., An, H., Shen, L., Dai, T., Fang, W., Gao, X., Dong, D., 2017. Global pattern of the international fossil fuel trade: the evolution of communities. Energy 123, 260.