پژوهش ها و چشم اندازهای اقتصادی

پژوهش ها و چشم اندازهای اقتصادی

تحلیل وابستگی ساختاری بین بازارهای رمزارز و بورس اوراق بهادارِ تهران: رویکرد ترکیبی تجزیه مود متغیر و کاپولا (VMD- Copula)

نوع مقاله : پژوهشی اصیل

نویسندگان
1 دانشجوی دکتری علوم اقتصادی (اقتصاد مالی)، دانشکدۀ اقتصاد و مدیریت، دانشگاه ارومیه، ارومیه، ایران
2 دانشیار گروه اقتصاد، دانشکدۀ اقتصاد و مدیریت، دانشگاه ارومیه، ارومیه، ایران
چکیده
هدف اصلی این مطالعه، بررسی وابستگی ساختاری بین بازدهی بازارهای رمزارز و شاخص بورس اوراق بهادارِ تهران با استفاده از داده‏های روزانه طی دورۀ 8 آگوست 2015 تا 21 فوریه 2023 است. این مطالعه روش تجزیه حالت متغیر (VMD) و انواع مختلف توابع کاپولای متقارن و نامتقارن را برای بررسی ساختار وابستگی بین بازارهای رمزارز و شاخص بورس در افق‌های متفاوت سرمایه‌گذاری ترکیب می‌کند. در مدل‏سازی توزیع‌های حاشیه‌ای از الگوهای FIGARCH-GED استفاده شده است. نتایج مطالعه حاکی از آن است که بین بازدهی رمزارز بیت‌کوین و شاخص بورس ایران با استفاده از تابع کاپولای ارشمیدسی هیچ‌گونه وابستگی ساختاری چه در کوتاه‌مدت و چه در بلندمدت وجود ندارد. نتیجه بیانگر این است که بازار رمزارزها از طبقۀ اصلی دارایی‌های مالی و اقتصادی جدا شده‌اند و مزایای متنوعی را برای سرمایه‌گذاران ارائه می‌دهند. همچنین از توابع(CVine-Copula) که در ادبیات مالی یکی از کاراترین روش‌های بررسی ساختار وابستگی می‌باشد، استفاده شده است. وابستگی ساختاری با استفاده از توابع کاپولای واین به نسبت توابع کاپولای ارشمیدسی توانایی بهتری در شناسایی وابستگی ساختاری بین بازدهی رمزارزها و شاخص‌ بورس در ایران دارد. براساس یافته‌های تحقیق، بین بازدهی رمزارز بیت‌کوین و شاخص سهام به شرط رشد قیمت رمزارز اتریوم، کاپولای کلایتون به‌عنوان مدل مناسب توضیح‌دهندۀ همبستگی انتخاب شده است که بیانگر اثرات نامتقارن بوده و وابستگی بیشتری در دنباله چپ وجود دارد. یافته‌های مطالعه نشان‌دهندۀ نقش مهم رمزارزها در سبد سرمایه‌گذاران است، زیرا به‌عنوان گزینۀ متنوعی برای سرمایه‌گذاران عمل می‌کنند و طبقه دارایی سرمایه‌گذاری جدیدی هستند.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Dependence Structure between Cryptocurrency and Tehran Stock Exchange Market New Evidence from VMD-based Copula Tests

نویسندگان English

Roghayeh Mohseninia 1
Ali Rezazadeh 2
Yousef Mohammadzadeh 2
Shahab Jahangiri 2
1 PhD Student in Economics, Faculty of Economics and Management, Urmia University, Urmia, Iran
2 Associate Professor in Economics, Faculty of Economics and Management, Urmia University, Urmia, Iran
چکیده English

Introduction

In recent years, cryptocurrency analysis has become increasingly popular both in academic research and in the financial system as a whole. Cryptocurrencies are a globally spreading phenomenon that is frequently and also prominently addressed by media, venture capitalists, financial institutions, and governments alike (Glasser et al., 2014). Knowing the relationship between cryptocurrency market, stock market or commodity market will be very useful for managing investors’ portfolios and how much of their investment will be allocated to cryptocurrencies for their assets to be secure.

The possible interdependence of stock markets and cryptocurrencies is a crucial concern in the financial market literature due to its paramount importance for investors and portfolio managers. Although cryptocurrencies are a recent phenomenon, with the first cryptocurrency, Bitcoin, appearing in January 2016, they quickly become a worldwide phenomenon that is broadly discussed in the finance literature (Glaser et al., 2014).

Many scholars in recent times explored the correlation between cryptocurrencies and stock market. Several studies (see Conrad et al., 2018; Jiang et al., 2021; Tiwari et al., 2019; Corbet et al., 2018; Salisu et al., 2019) considered advanced economies to explore the impact of cryptocurrency and stock market, provided important insightful stories. Few others (see Lahiani and Jlassi, 2021; Dasman, 2021; Vardar and Aydogan et al., 2019; Sami and Abdallah, 2020) explored the association in emerging economies. Additionally, the association between cryptocurrency and stock market also received considerable attention among the scholars in the time of COVID-19 (see Mariana et al., 2021; Grobys, 2021; Nguyen, 2021; Kumah, 2021). The issue discussed in these studies is mainly based on the fact that cryptocurrencies are gradually establishing themselves as a new class of assets with unique characteristics, although skepticism and lack of understanding of their nature still exist. These new financial assets (tokens) can offer new opportunities for portfolio diversification and risk hedging. The common consensus regarding weak correlations between cryptocurrencies and stock markets has recently been challenged by their synchronous downturn during the COVID-19 pandemic.

Any financial instrument such as stocks and cryptocurrencies traded in the markets may be subject to price fluctuations based on several factors. Factors such as positive and negative news, financial status of stock companies traded in stock markets, political events, global changes and environmental conditions including market risks. With the globalization of the use of cryptocurrencies, the popularity and use of cryptocurrencies has been steadily increasing in Iran over the past few years. In this new situation, investors are looking to reduce their investment risk and achieve optimal portfolio diversification with the participation of new financial assets. Considering the direct and indirect influence of Iran's economy on global financial markets and the expansion of activities related to cryptocurrencies in the context of international sanctions, the question is raised whether there is a relationship between stock returns and cryptocurrencies returns? This study combines the Variational Mode Decomposition (VMD) method and symmetric and asymmetric copula functions to examine the dependence structure between cryptocurrency and stock markets under different investment horizons.

Methodology

The fundamental aim of this study is to investigate the structural dependence between the cryptocurrency market and the Iran Stock Market Index using daily data (common trading days) during the period from 8 August 2015 to 21 February 2023. This study combines VMD method and various symmetric and asymmetric copula functions to examine the short-term and long-term dependence structure between the cryptocurrency markets and the Iranian stock market under different investment horizons. In this study, the Normal copula, the student-t copula and the Archimedean copula family functions such as the Frank copula, the Gumbel copula and the Clayton copula have been used. Also, the dependence structure between markets is investigated with one subroutines of the Vine copula functions, namely C-Vine.

Discussion and Results

The results show that there is no structural dependence between the return Bitcoin and Iran stock market using the Archimedean copula function, either in the short term or in the long term. In other words, the changes domain in return of Bitcoin during the low and high ranges on the return of the mentioned index are insignificant. The results indicate that the cryptocurrencies researced are strongly correlated. However, the associations between cryptocurrencies and conventional financial assets are negligible. These results are consistent with the findings of Gil-Alana et al. (2020); Tiwari et al. (2019) and Corbet et al. (2018) which reveal that there is no correlation between the cryptocurrency and stock markets.

Conclusion

The results indicate that the cryptocurrency market is separated from the main class of financial and economic assets and hence offers various benefits to investors. Structural dependence using Vine copula functions is better than Archimedean copula in identifying the structural dependence between cryptocurrency and the Iranian Stock Market Index during the period under study. Based on the research findings, the Clayton copula has been chosen as the suitable model to explain the correlation between the return of Bitcoin and the stock market index on the condition of the growth price Ethereum. This point indicates asymmetric effects the dependence on the negative tail is more than the positive one. The findings in this paper indicate the significant role of cryptocurrencies in investor portfolios since they serve as a diversification option for investors, confirming that cryptocurrency is a new investment asset class.

کلیدواژه‌ها English

Cryptocurrencies
Variational mode decomposition
Copula function
Stock Market Index
Dependence Structure
Aftab, M., Ahmad, R., & Ismail, I. (2015). Dynamics between currency and equity in Chinese markets. Chinese Management Studies, 9(3), 333-354.
Andrianto, Y., & Diputra, Y. (2017). The effect of cryptocurrency on investment portfolio effectiveness. Journal of finance and accounting, 5(6), 229-238.
Bariviera, A. F., Zunino, L., & Rosso, O. A. (2018). An analysis of high-frequency cryptocurrencies prices dynamics using permutation-information-theory quantifiers. Chaos: An Interdisciplinary Journal of Nonlinear Science, 28(7).
Bedford, T., & Cooke, R. M. (2001). Probability density decomposition for conditionally dependent random variables modeled by vines. Annals of Mathematics and Artificial intelligence, 32, 245-268.
Bedford, T., & Cooke, R. M. (2002). Vines--a new graphical model for dependent random variables. The Annals of Statistics, 30(4), 1031-1068.
Bejaoui, A., Frikha, W., Jeribi, A., & Bariviera, A. F. (2023). Connectedness between emerging stock markets, gold, cryptocurrencies, DeFi and NFT: Some new evidence from wavelet analysis. Physica A: Statistical Mechanics and its Applications, 619, 128720.
Blau, B. M. (2017). Price dynamics and speculative trading in bitcoin. Research in International Business and Finance, 41, 493-499.
Bouri, E., Gupta, R., & Roubaud, D. (2019). Herding behaviour in cryptocurrencies. Finance Research Letters, 29, 216-221.
Briere, M., Oosterlinck, K., & Szafarz, A. (2015). Virtual currency, tangible return: Portfolio diversification with bitcoin. Journal of Asset Management, 16(6), 365-373.
Cheah, E. T., & Fry, J. (2015). Speculative bubbles in Bitcoin markets? An empirical investigation into the fundamental value of Bitcoin. Economics letters, 130, 32-36.
Conrad, C., Custovic, A., & Ghysels, E. (2018). Long-and short-term cryptocurrency volatility components: A GARCH-MIDAS analysis. Journal of Risk and Financial Management, 11(2), 23.
Corbet, S., Larkin, C., Lucey, B., 2020. The contagion effects of the COVID-19 pandemic: evidence from gold and cryptocurrencies. Finance Res. Lett.
Corbet, S., Meegan, A., Larkin, C., Lucey, B., & Yarovaya, L. (2018). Exploring the dynamic relationships between cryptocurrencies and other financial assets. Economics Letters, 165, 28-34.
Dasman, S. (2021). Analysis of return and risk of cryptocurrency bitcoin asset as investment instrument. Accounting and Finance Innovations, 51.
Ding, Z., Granger, C. W., & Engle, R. F. (1993). A long memory property of stock market returns and a new model. Journal of empirical finance, 1(1), 83-106.
Dornbusch, R., Park, Y. C., & Claessens, S. (2000). Contagion: understanding how it spreads. The World Bank Research Observer, 15(2), 177-197.
Dragomiretskiy, K., & Zosso, D. (2013). Variational mode decomposition. IEEE transactions on signal processing, 62(3), 531-544.
Dyhrberg, A. H. (2016). Bitcoin, gold and the dollar–A GARCH volatility analysis. Finance Research Letters, 16, 85-92.
Eisl, A., Gasser, S. M., & Weinmayer, K. (2015). Caveat emptor: Does Bitcoin improve portfolio diversification? Available at SSRN 2408997.
Fenech, J. P., & Vosgha, H. (2019). Oil price and Gulf Corporation Council stock indices: New evidence from time-varying copula models. Economic Modelling, 77, 81-91.
Ghorbel, A., Frikha, W., & Manzli, Y. S. (2022). Testing for asymmetric non-linear short-and long-run relationships between crypto-currencies and stock markets. Eurasian Economic Review, 12(3), 387-425.
Gil-Alana, L. A., Abakah, E. J. A., & Rojo, M. F. R. (2020). Cryptocurrencies and stock market indices. Are they related?. Research in International Business and Finance, 51, 101063.
Glaser, F., Zimmermann, K., Haferkorn, M., Weber, M. C., & Siering, M. (2014). Bitcoin-asset or currency? revealing users' hidden intentions. Revealing Users' Hidden Intentions (April 15, 2014). ECIS.
Grobys, K. (2021). When Bitcoin has the flu: On Bitcoin’s performance to hedge equity risk in the early wake of the COVID-19 outbreak. Applied Economics Letters, 28(10), 860-865.
Hileman, G., & Rauchs, M. (2017). Global cryptocurrency benchmarking study. Cambridge Centre for Alternative Finance, 33, 33-113.
Jiang, Y., Lie, J., Wang, J., & Mu, J. (2021). Revisiting the roles of cryptocurrencies in stock markets: A quantile coherency perspective. Economic Modelling, 95, 21-34.
Joe, H. (1997). Multivariate Models and Dependence Concepts. Chapman & Hall, London.
Katsiampa, P. (2017). Volatility estimation for Bitcoin: A comparison of GARCH models. Economics Letters, 158, 3-6.
Keshavarz Haddad, G., & Heyrani, M. (2014). Estimation of Value at Risk in the Presence of Dependence Structure in Financial Returns: A Copula Based Approach. Journal of Economic Research (Tahghighat-E-Eghtesadi), 49(4), 869-902. (In Persian).
Keyvanian, S., Jahangard, F., & Ashrafi, Y. (2018). The Effect of Coin Price, Exchange Rate, Oil and Tehran Stock Exchange Index on Bitcoin Demand in Iran by Self-Regression Model. Defense Economics, 3(8), 109-124. (In Persian).
Kristjanpoller, W., Bouri, E., & Takaishi, T. (2020). Cryptocurrencies and equity funds: Evidence from an asymmetric multifractal analysis. Physica A: Statistical Mechanics and Its Applications, 545, 123711.
Kumah, S. P., & Odei-Mensah, J. (2021). Are Cryptocurrencies and African stock markets integrated?. The Quarterly Review of Economics and Finance, 81, 330-341.
Kumah, S. P., Abbam, D. A., Armah, R., & Appiah-Kubi, E. (2021). African financial markets in a storm: Cryptocurrency safe havens during the COVID-19 pandemic. Journal of Research in Emerging Markets, 3(2), 60-70.
Lahiani, A., & Jlassi, N. B. (2021). Nonlinear tail dependence in cryptocurrency-stock market returns: The role of Bitcoin futures. Research in International Business and Finance, 56, 101351.
Lahmiri, S. (2015). Long memory in international financial markets trends and short movements during 2008 financial crisis based on variational mode decomposition and detrended fluctuation analysis. Physica A: Statistical Mechanics and its Applications, 437, 130-138.
Liu, W. (2019). Portfolio diversification across cryptocurrencies. Finance Research Letters, 29, 200-205.
Mariana, C. D., Ekaputra, I. A., & Husodo, Z. A. (2021). Are Bitcoin and Ethereum safe-havens for stocks during the COVID-19 pandemic?. Finance research letters, 38, 101798.
Mensi, W., Hammoudeh, S., Shahzad, S.J.H., Shahbaz, M., 2017a. Modeling systemic risk and dependence structure between oil and stock markets using a variational mode decomposition-based copula method. J. Bank. Financ. 75, 258–279.
Mohammadishad, H., Keyghobadi, A., & Madanchi, Z. M. (2021). Dynamic Accounting and Financial Relationships between Commodity Markets, Financial Markets and Digital Currencies with the ARDL Model Approach. (In Persian).
Nadarajah, S., & Chu, J. (2017). On the inefficiency of Bitcoin. Economics Letters, 150, 6-9.
Nakamoto, S. (2008). Bitcoin: A peer-to-peer electronic cash system. Decentralized business review.‏
Nasire bonyad abad, Z., & Samadi, F. (2021). compare time series stock markets and bit coin and effect markets returns with fractal approach. Journal of Investment Knowledge, 10(38), 411-428. (In Persian).
Nelsen, R. B. (1991). Copulas and association. Advances in probability distributions with given marginals: beyond the copulas, 51-74.
Nelsen, R.B. 2006. An introduction to copulas. Springer, New York. 269 pp.
Nguyen, K. Q. (2022). The correlation between the stock market and Bitcoin during COVID-19 and other uncertainty periods. Finance research letters, 46, 102284.
Nikoomaram, H., Pourzamani, Z., & Dehghan, A. (2015). Spillover Effect the on Contest Import & Export oriented industries. Financial Knowledge of Securities Analysis, 8(25), 1-18. (In Persian).
Omane-Adjepong, M., Ababio, K. A., & Alagidede, I. P. (2019). Time-frequency analysis of behaviourally classified financial asset markets. Research in International Business and Finance, 50, 54-69.
Sabahi, S., Mokhatab Rafiei, F., & Rastegar, M. (2020). Mixed- Asset Portfolio Optimization. Monetary & Financial Economics, 27(19), 249-278. doi: 10.22067/pm.v27i19.84579. (In Persian).
Salisu, A. A., Isah, K., & Akanni, L. O. (2019). Improving the predictability of stock returns with Bitcoin prices. The North American Journal of Economics and Finance, 48, 857-867.
Sami, M., & Abdallah, W. (2021). How does the cryptocurrency market affect the stock market performance in the MENA region?. Journal of Economic and Administrative Sciences, 37(4), 741-753.
Shahzad, S. J. H., Bouri, E., Roubaud, D., & Kristoufek, L. (2020). Safe haven, hedge and diversification for G7 stock markets: Gold versus bitcoin. Economic Modelling, 87, 212-224.
Shahzad, S. J. H., Kumar, R. R., Ali, S., & Ameer, S. (2016). Interdependence between Greece and other European stock markets: A comparison of wavelet and VMD copula, and the portfolio implications. Physica A: Statistical Mechanics and its Applications, 457, 8-33.
Shahzad, S. J. H., Mensi, W., Hammoudeh, S., Rehman, M. U., & Al-Yahyaee, K. H. (2018). Extreme dependence and risk spillovers between oil and Islamic stock markets. Emerging Markets Review, 34, 42-63.
Sklar, M. (1959). Fonctions de répartition à n dimensions et leurs marges. In Annales de l'ISUP (Vol. 8, No. 3, pp. 229-231).
Stensås, A., Nygaard, M. F., Kyaw, K., & Treepongkaruna, S. (2019). Can Bitcoin be a diversifier, hedge or safe haven tool?. Cogent Economics & Finance, 7(1), 1593072.
Tiwari, A. K., Raheem, I. D., & Kang, S. H. (2019). Time-varying dynamic conditional correlation between stock and cryptocurrency markets using the copula-ADCC-EGARCH model. Physica A: Statistical Mechanics and its Applications, 535, 122295.
Umar, M., Hung, N. T., Chen, S., Iqbal, A., & Jebran, K. (2020). Are stock markets and cryptocurrencies connected?. The Singapore Economic Review, 1-16.
Urquhart, A. (2016). The inefficiency of Bitcoin. Economics Letters, 148, 80-82.
Uzonwanne, G. (2021). Volatility and return spillovers between stock markets and cryptocurrencies. The Quarterly Review of Economics and Finance, 82, 30-36.
Van de Klashorst. (2018). Volatility Spillovers and Other Market Dynamics between cryptocurrencies and The Equity Marketz . Workong paper.
Vardar, G., & Aydogan, B. (2019). Return and volatility spillovers between Bitcoin and other asset classes in Turkey: Evidence from VAR-BEKK-GARCH approach. EuroMed Journal of Business, 14(3), 209-220.
Vidal-Tomás, D., & Ibañez, A. (2018). Semi-strong efficiency of Bitcoin. Finance Research Letters, 27, 259-265.
Wang, H., Wang, X., Yin, S., & Ji, H. (2022). The asymmetric contagion effect between stock market and cryptocurrency market. Finance Research Letters, 46, 102345.
Yang, L., Zhao, L., & Wang, C. (2019). Portfolio optimization based on empirical mode decomposition. Physica A: Statistical Mechanics and its Applications, 531, 121813.
Yarovaya, L., Brzeszczyński, J., & Lau, C. K. M. (2016). Intra-and inter-regional return and volatility spillovers across emerging and developed markets: Evidence from stock indices and stock index futures. International Review of Financial Analysis, 43, 96-114.
Yermack, D. (2015). Is Bitcoin a real currency? An economic appraisal. In Handbook of digital currency (pp. 31-43). Academic Press.
Zhang, B., Wang, J., & Fang, W. (2015). Volatility behavior of visibility graph EMD financial time series from Ising interacting system. Physica A: Statistical Mechanics and its Applications, 432, 301-314.