پژوهش ها و چشم اندازهای اقتصادی

پژوهش ها و چشم اندازهای اقتصادی

تتأثیر کووید-19 بر آسیب‌پذیری اقتصادی کشورها با سطوح درآمدی مختلف: رویکرد رگرسیون انتقال ملایم پانلی

نویسندگان
1 دانش آموخته کارشناسی ارشد علوم اقتصادی، گروه علوم اقتصادی، دانشکده علوم انسانی و اجتماعی، دانشگاه کردستان، ایران
2 استادیار، گروه علوم اقتصادی، دانشکده علوم انسانی و اجتماعی، دانشگاه کردستان، ایران
3 گروه توسعه و برنامه‌ریزی اقتصادی، دانشکده مدیریت و اقتصاد، دانشگاه تربیت مدرس، تهران، ایران
چکیده
­همه ‏گیری کووید-19 به‌عنوان یکی از بحران‏های اخیر جهان، هزینه‏ هایی را به اقتصاد کشورها وارد کرده که توجه محققان و سیاستمداران را برای ارزیابی این شوک خارجی به مفهوم آسیب‌پذیری اقتصادی در قالب شاخص هشداردهنده مورد توجه قرار داده است. درنتیجه، هدف اصلی این پژوهش، بررسی تأثیر پاندمی کووید-19 بر آسیب ‏پذیری اقتصادی کشورها با سطوح درآمدی بالا، متوسط و پایین است. این بررسی برای 150 کشور و با استفاده از مدل رگرسیون انتقال ملایم پانلی در بازۀ زمانی 2020-2021 صورت‌ گرفته است. بدین‌منظور، برای محاسبۀ شاخص آسیب ‏پذیری‏ اقتصادی از روش بریگوگلیو استفاده شده است. نتایج نشان‏ دهندۀ رابطۀ غیرخطی بین متغیرهای پژوهش است. همچنین با درنظر گرفتن یک تابع انتقال با یک پارامتر آستانه ‏ای که بیانگر یک مدل دو رژیمی است و برای تصریح رابطۀ غیر‏خطی بین متغیرهای الگو برای سه گروه کشورهای با درآمد بالا، متوسط و پایین کافی است. پارامتر شیب برای سه گروه کشور به ترتیب برابر 9876/5، 1569/6 و 9987/3 است. نتایج برآورد مدل حاکی از آن است که در هر دو رژیم خطی و غیر‏خطی، ‏کووید-19 ‌تأثیر مثبت و معنی‏دار در گروه کشورهای با درآمد بالا، متوسط و پایین دارد. بدین‏ معنی که افزایش در پاندمی کووید-19 منجر به افزایش آسیب‏پذیری اقتصادی کشورها می ‏شود؛ بنابراین، کشورها با‏یستی با اجرای سیاست‏های محکم و تدابیر مؤثر، مانندِ تنوع در اقتصاد، سرمایه‌گذاری در زیر ساخت‏های بهداشتی، توسعه برنامه حمایتی، حفظ تجارت بین‌المللی و تاب‏آوری اقتصادی در مقابل آسیب‏ پذیری اقتصادی ناشی از پاندمی کووید-19 و بلایای طبیعی به ارتقا و پایداری خود بپردازند.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

COVID-19 and Economic Vulnerability in Countries with Different Income Levels A Panel Smooth Transition Regression Approach

نویسندگان English

Sedigheh Hossaini 1
Saman Ghaderi 2
Zana Mozaffari 2
Ramin Amani 3
1 M.Sc. in Economics, Department of Economics, Faculty of Humanities and Social Sciences, University of Kurdistan, Iran
2 Assistant Professor, Department of Economics, Faculty of Humanities and Social Sciences, University of Kurdistan, Iran
3 Department of Economic Development and Planning, Faculty of Management and Economics, University of Tarbiat Modares, Tehran, Iran
چکیده English

Introduction

The Covid-19 pandemic, as one of the recent world crises, has brought costs to the economies, which has drawn the attention of researchers and politicians to the concept of economic vulnerability in the form of a warning index to evaluate this external shock. The main aim of this study is to investigate the impact of the COVID-19 pandemic on economic vulnerability in high, medium, and low-income levels countries. This study was conducted for 150 countries using the Panel Smooth Transition Regression (PSTR) approach over 2020-2021. In this regard, the Briguglio method was used to calculate the Economic Vulnerability Index. The results of this research indicate that the COVID-19 pandemic has had a positive and significant effect on the economic vulnerability of countries. The linear test results confirm the non-linear relationship between the variables. Moreover, by considering a transfer function with a threshold parameter (the level of COVID-19 morbidity and mortality), a two-regime model is presented to specify the non-linear relationship between the pattern variables for three groups of high, medium, and low-income countries. The slope parameter (transfer rate) for these three groups of countries is 5.9876, 6.1569, and 3.9987, respectively. The model estimation results show that in both linear and non-linear regimes, COVID-19 has a positive impact on the economic vulnerability of countries with high, medium, and low incomes, meaning that an increase in the COVID-19 pandemic has led to a decrease in the economic vulnerability of these groups of countries.



Methodology

Through extensive research and data collection, a sample of 150 countries for the period 2020-2021 has been selected. The primary criterion for selecting countries and the period is the availability of data. The research database includes sources such as the World Bank, the International Monetary Fund, and the United Nations Development Organization. The dependent variables in this study are the Vulnerability Index. The Vulnerability Index is constructed based on the Briguglio method using four components: 1) Trade openness 2) Export concentration 3) Dependency on strategic imports, and 4) Exposure to natural disasters. Other variables included in the model are the number of COVID-19 deaths, per capita gross domestic product (GDP), foreign direct investment, and remittances as a percentage of GDP, which have been collected from the World Bank and other reliable sources. This study used Panel Smooth Transition Regression (PSTR) approach. PSTR is a statistical model that is commonly used to analyze the non-linear relationships between economic variables. This model is particularly useful for investigating the behavior of variables that exhibit non-linear patterns or changes in their behavior over time. PSTR is a flexible model that can be used to capture the complex relationships between different variables, making it a popular choice in various fields, such as economics, finance, and social sciences. The PSTR model is an extension of the Smooth Transition Regression (STR) model, which is a non-linear regression model that allows for the specification of the transition function between two different regimes. In the PSTR model, the transition function is extended to include panel data, which allows for the analysis of the non-linear relationships between variables across multiple units, such as countries or firms, over time. PSTR is a powerful tool for analyzing the impact of various economic factors on different regions or countries. For example, it can be used to investigate whether the impact of a particular economic policy or event is uniform across different countries or regions, or whether it varies depending on the level of economic development or other relevant factors. Additionally, PSTR can be applied to different types of data, including cross-sectional, time series, and panel data, making it a versatile tool for analyzing a wide range of economic phenomena.

Results and Discussion

the vulnerability model indicates that the slope parameter, which represents the speed of transition from one regime to another, is equal to 1191.414, and the regime change location is 435.6, with the logarithm of its anti-value being 2213094. Therefore, as long as the COVID-19 pandemic (mortality) value is less than the anti-logarithm values, the variables will behave according to the first regime. If the value of the COVID-19 pandemic exceeds the anti-logarithm values, the variables will follow the second regime. Based on the results of the two regimes, it is evident that the COVID-19 pandemic variable has had a positive and significant impact, both linear and nonlinear on countries. This means that the increase in the COVID-19 pandemic has led to an increase in the economic vulnerability of countries. In other studies, such as Brzyska & Szamrej (2021), Marti (2021), and Puertas, it has been demonstrated that the COVID-19 pandemic has had a positive and significant effect on the vulnerability of countries in the European Union, which mostly includes high-income countries.

Conclusion

This paper examines the impact of the COVID-19 pandemic on economic vulnerability in 150 countries during 2020-2021. The results obtained from the Panel Smooth Transition Regression (PSTR) model confirm a nonlinear relationship between the variables and the presence of two threshold regimes with a threshold for economic vulnerability and model. It also indicates that the COVID-19 pandemic has a positive effect on vulnerability. This means that an increase in the COVID-19 pandemic has led to an increase in vulnerability and a decrease in economic resilience in these countries.

کلیدواژه‌ها English

Pandemic
Covid-19
Economic vulnerability
Panel Smooth Transition Regression Approach
Income Levels
Agbe, G. M. (2020). Impact of the COVID-19 pandemic on poverty in MENA countries. Focus on child poverty https://www. coronavirus. Thu. edu/map.‏
Akter, S., & Mallick, B. (2013). The poverty–vulnerability–resilience nexus: Evidence from Bangladesh. Ecological Economics, 96, 114-124
Alwang, J., Siegel, P. B., & Jorgensen, S. L. (2001). Vulnerability: a view from different disciplines. Social protection discussion paper series, 115, 60
Amani, R., Ghaderi, S., & Ahmadzadeh, K. (2022). Covid-19 and Inflation Rate: An Evidence for OECD Countries. Iranian Journal of Economic Studies, 11(1). doi: 10.22099/ijes.2023.43481.1825
Amiri, H., Pirdadeh Beyranvand, M., Norouzi Amogin, F., & Alizadeh, S. (2018). Estimation Vulnerability and Resilience Indicators in Iran Economy. Quarterly Journal of The Macro and Strategic Policies, 6(23), 434-455. doi: 10.32598/JMSP.6.3.434 [In Persian]
Angeon, V., & Bates, S. (2015). Reviewing composite vulnerability and resilience indexes: A sustainable approach and application. World Development, 72, 140-162.
Asongu, S. A., Diop, S., & Nnanna, J. (2021). The geography of the effectiveness and consequences of Covid‐19 measures: Global evidence. Journal of Public Affairs, 21, 85-105
Ataguba, J.E. (2020). COVID-19 pandemic, a war to be won: Understanding its economic implications for Africa. Applied Health Economics and Health Policy, 18, 325–328
Atkins, J. P., Mazzi, S., & Easter, C. D. (2000). "A Commonwealth vulnerability index for developing countries". London: Commonwealth Secretariat, Economic Paper, 40.‏
Baldwin, R., & di Mauro, B. W. (2020). "Introduction. In R. Baldwin & B. W. di Mauro (Eds.), Economics in the Time of COVID-19". https://cepr. rg/publications/books-and-reports/economics-time-covid-19
Barua, S. (2020). "Understanding Coronanomics: The economic implications of the coronavirus (COVID-19) pandemic". Available at SSRN 3566477.
Basouli, M., & Jabbari, G. (2021). The Relationship between Crisis Management and Community Resilience in Tourism Destination at Corona Crisis Case Study: Hamedan City. Urban Tourism, 8(1), 33-48. doi: 10.22059/jut.2021.318782.884 [In Persian]
Beck, T. (2020). Finance in the times of coronavirus". In Baldwin, R. and di Mauro, B.W. (eds). Economics in the Time of COVID-19. A VoxEU.org Book, Centre for Economic Policy Research, London. Accessed 26 March 2020 at: https://voxeu.org/system/files/epublication/COVID-19.pdf
Bloom, D. E., Kuhn, M., & Prettner, K. (2022). Modern infectious diseases: macroeconomic impacts and policy responses. Journal of Economic Literature, 60(1), 85-131.
Boissay, F., & Rungcharoenkitkul, P. (2020). Macroeconomic effects of Covid-19: an early review (No. 7). Bank for International Settlements.
Boone, L. (2020). Coronavirus: the world economy at risk. OECD economic outlook, 10.
Booth, S. A. (2015). Crisis management strategy: Competition and change in modern enterprises. Routledge.
Briguglio, L (1997). Alternative Economic Vulnerability Indices for Developing Countries. Report prepared for the Expert Group on Vulnerability Index.UN(DESA), 17-19 December 1997.
Briguglio, L. (1995). Small island developing states and their economic vulnerabilities. World Development, 23(9), 1615-1632
Briguglio, L. (2014). A Vulnerability and Resilience Framework for Small States. Report Prepared for the Commonwealth Secretariat. Tal-Qroqq: University of Malta
Briguglio, L., & Galea, W. (2003). Updating and augmenting the economic vulnerability index. Occasional Reports on Islands and Small States, No. 2004/4. Malta: Islands and Small States Institute of the University of Malta. Retrieved from
Briguglio, L., Cordina, G., Farrugia, N., & Vella, S. (2008). Economic vulnerability and resilience. United Nations University (UNU). World Institute for Development Economics Research (WIDER).
Brzyska, J., & Szamrej-Baran, I. (2021). Covid-19 Economic Vulnerability Index: EU Evidence. Procedia Computer Science, 192, 3551-3559.
Cecchetti, S.G. and Schoenholtz, K.L. (2020). Contagion: Bank runs and COVID-19. Baldwin, R. and di Mauro, B.W. (eds). Economics in the Time of COVID-19. AVoxEU.org Book, Centre for Economic Policy Research, London. Accessed 26 March 2020 at: https://voxeu.org/system/files/epublication/COVID-19.pdf
Chen, S., Igan, D. O., Pierri, N., Presbitero, A. F., Soledad, M., & Peria, M. (2020). Tracking the economic impact of COVID-19 and mitigation policies in Europe and the United States. IMF Working Papers, 2020(125).362-386
Chiou.T. Y, KaiChan.H, Ettice. F, HoChung.S. (2011). The influence of greening the suppliers and green innovation on environmental performance and competitive advantage in Taiwan’s Transportation. Research Part E: Logistics and Transportation Review, 47(6), 822-836.
Chitiga‐Mabugu, M., Henseler, M., Mabugu, R., & Maisonnave, H. (2021). The economic and distributional impact of COVID‐19: Evidence from macro‐micro modelling of the South African economy. South African Journal of Economics, 89(1), 82-94
Cochran, J.H. (2020). Coronavirus monetary policy. In Baldwin, R. and di Mauro, B.W. (eds). Economics in the Time of COVID-19. A VoxEU.org Book, Centre for Economic Policy Research, London. Accessed 26 March 2020 at: https://voxeu.org/system/files/epublication/COVID-19.pdf
Colletaz, G. and Hurlin, C. (2006). Threshold Effects of the Public CapitProductivity: An International Panel Smooth Transition Approach.Working Paper, 1/2006, LEO, Université d'Orléans.
Correia, S., Luck, S., and Verner, E. (2020). Pandemics depress the economy, public health interventions do not: Evidence from the 1918 flu. 268,74-98
Danielsson, J., Macrae, R., Vayanos, D., & Zigrand, J. P. D. (2020). We shouldn’t be comparing the coronavirus crisis to 2008-this is why. Global Agenda. 2008.95, 58-79
Davradakis, E., Zwart, S., Marchitto, B., & Santos, R. (2020). The EIB Covid-19 economic vulnerability index-An analysis of countries outside the European :union:. European Investment Bank
Diop, S., Asongu, S. A., & Nnanna, J. (2021). Global health pandemics usually impact economies and indicate their degree of vulnerability resilience. International Social Science Journal, 71(S1), 37-50.
Dontoh, A., Elayan, F. A., Ronen, J., & Ronen, T. (2021). Unfair “Fair Value” in illiquid markets: Information spillover effects in times of crisis. Management Science, 67(8), 5163-5193.
Fernandes, N. (2020). Economic effects of coronavirus outbreak (COVID-19) on the world economy. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3557504
Fok, D., Van Dijk, D. & P. Franses (2004). A Multi-Level Panel STARModel for US Manufacturing Sectors., Working Paper, University of Rotterdam.
Fornaro, L., & Wolf, M. (2020). Covid-19 coronavirus and macroeconomic policy. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3560337
Ghiathund, Abolfazl, Sadaqat Parast, Eldar, Gholamreza, Samira, Sanai Moghadam, Mohsen. (2013). The general policy of resistance economy, a review of the world literature on national resilience. Vice President of Economic Research of the Islamic Council. https://rc.majlis.ir/fa/report/download/881024 [In Persian]
Gonzalez, A., Terasvirta, T., Van Dijk, D. (2005). Panel Smooth TransitionRegression Models. SEE/EFI Working Paper Series in Economics and Finance (604), pp. 1-33
Gourinchas, P. O. (2020). Flattening the pandemic and recession curves. Mitigating the COVID
Economic Crisis: Act Fast and Do Whatever, 31 individuals’ stature and type 2 diabetes status: propensity score analysis.” Environmental health insights, 13, 1178630219836975
Guan, D., Wang, D., Hallegatte, S., Davis, S. J., Huo, J., Li, S., ... & Gong, P. (2020). Global supply-chain effects of COVID-19 control measures. Nature human behaviour, 4(6), 577-587.
Guillaumont, P. (2009). An economic vulnerability index: its design and use for international development policy. Oxford Development Studies, 37(3), 193-228
Hansen, B. E. (1999). Threshold effects in non-dynamic panels: Estimation, testing, and inference. Journal of Econometrics, 93, pp. 345-368
Harjes, T., Hofman, D., Nier, E., & Olafsson, T. (2020). Monetary and financial policy responses for emerging market and developing economies. IMF Special Series Notes, Washington, DC, June.
Holding, P. A., & Snow, R. W. (2001). Impact of Plasmodium falciparum malaria on performance and learning: review of the evidence. The Intolerable Burden of Malaria: A New Look at the Numbers: Supplement to Volume 64 (1) of the American Journal of Tropical Medicine and Hygiene.
IMF, 2021a. “Policy Tracker”, https://www.imf.org/en/Topics/imf-and-covid19/Policy-Responses-to- COVID-19.
Ivanov, D. (2020). Predicting the impacts of epidemic outbreaks on global supply chains: A simulation-based analysis on the coronavirus outbreak (COVID-19/SARS-CoV-2) case. Transportation Research Part E: Logistics and Transportation Review, 136, 101922.
Jude, E. (2010). Financial Development and Growth: A Panel SmoothRegression Approach. Journal of Economic Development, 35, 15-33.
Kolivand, P. H., & Kazemi, H. (2021). The Effects of COVID-19 on Mental Health, Socio-Economic Issues, and Social Interactions in Tehran: A Pilot Study [Research --- Open Access, CC-BY-NC]. The Neuroscience Journal of Shefaye Khatam, 9(2), 100-110. https://doi.org/10.52547/shefa.9.2.100 [In Persian]
Kpodar, K., Mlachila, M., Quayyum, S., & Gammadigbe, V. (2022). Defying the odds: Remittances during the Covid-19 pandemic. The Journal of Development Studies, 1-18.
Lee, A., & Cho, J. (2016). The impact of epidemics on the labor market: identifying victims of the Middle EastRespiratory Syndrome in the Korean labor market.International journal Forequity in health, 15(1), 196.
Lee, S & Posenau, K & Stebunovs, (2017), The Anatomy of Financial Vulnerabilities and Crises, Federal Reserve Board. At: www. federalreserve.gov/pubs/ifdp/
Marti, L., & Puertas, R. (2021). European countries’ vulnerability to COVID-19: Multicriteria decision-making techniques. Economic Research-Ekonomska Istraživanja, 34(1), 3309-3320.
Matani, H. (2019). Study of the Effects of the Corona Virus on the Global Economy. Scientific Quarterly Journal of Social Impact Assessment, 11(2), 163-181. [In Persian]
McKibbin, W., & Fernando, R. (2021). The global macroeconomic impacts of COVID-19: Seven scenarios. Asian Economic Papers, 20(2), 1-30.
Nokes, C., Grantham-McGregor, S. M., Sawyer, A. W., Cooper, E. S., & Bundy, D. A. P. (1992). Parasitic helminth infection and cognitive function in school children. Proceedings of the Royal Society of London. Series B: Biological Sciences, 247(1319), 77-81.
Novoa, R. I. B. (2021). Macro and Microeconomic Analysis of the Impact of the COVID-19 Pandemic in Chile and the Projections of the Central Banks. International research journal of management, IT and social sciences, 8(3), 236-245.
OECD. (2020c). Evaluating the initial impact of Covid-19 containment Measures on economic activity.
Pujawan, I. N., & Bah, A. U. (2022). Supply chains under COVID-19 disruptions: literature review and research agenda. In Supply Chain Forum: An International Journal, 23(1), 91-95.
Rahimi, F. (2022). Investigating the Impact of the Corona Virus (Covid-19) on Economic Development and the Tourism Industry. Applied Economics Quarterly, 12(40), 53-65. [In Persian]
Ruiz Estrada, M. A., Koutronas, E., Park, D., Khan, A., & Tahir, M. (2022). The impact of COVID-19 on the economic performance of Wuhan, China (2019–2021). Quality & quantity, 1-16.
Sakhaei, E., Khorsandi, M., Mohammadi, T., & Arbab, H. (2020). Investigating the Effects of Shock Caused by Covid-19 Virus on Iran's Economy: A GVAR Approach. Journal of Economics and Modeling, 11(2), 125-153. doi: 10.29252/jem.2021.185229.1492 [In Persian]
Salvatore, D. (2020). Growth and trade in the United States and the world economy: Overview. Journal of Policy Modeling, 42(4), 750-759.
Sodhi, M. S. (2016). Natural disasters, the economy and population vulnerability as a vicious cycle with exogenous hazards. Journal of Operations Management, 45, 101-113.
TAHERINIA, M., & hasanvand, a. (2020). Economic consequences of Covid-19 disease on the Iranian economy; With an emphasis on employment [Research]. Quarterly Journal of Nursing Management, 9(3), 43-58. http://ijnv.ir/article-1-737-en.html [In Persian]
Taherpoor, J. (2018). The Impact of Economic Resilience and Vulnerability on Labor Productivity [Applicable]. Journal of Economic Modeling Research, 9(31), 197-227. https://doi.org/10.29252/jemr.8.31.197 [In Persian]
Taherpoor, J., & A, S. (2018). Position of Iran's Economic Vulnerability and Resilience among Oil-Dependent Countries. Majlis and Rahbord, 25(93), 121-148. [In Persian]
Velde te, W. (2021). The economic impact of coronavirus: five lessons and challenges.” In ph, MacCan&, Vorley (eds.). Productivity and the pandemic: challenges and insights from Covid-19(pp. 1_21) London: Edward Elgar publishing.
Williams, S., & Schaefer, A. (2013). Small and medium‐sized enterprises and sustainability: Managers' values and engagement with environmental and climate change issues. Business Strategy and the Environment, 22(3), 173-186.
World Health Organization. (2020). Coronavirus disease (COVID-19): situation report, 182
Zagurska-Antoniuk, V., Suprunova, I., & Zavalii, T. (2020). The potential impact of the COVID-19 pandemic on GDP per capita in European countries. Public Policy and Accounting, (2 (2)), 3-12.