پژوهش ها و چشم اندازهای اقتصادی

پژوهش ها و چشم اندازهای اقتصادی

ارزیابی آثار تغییرات اقلیم بر گسترش ناامنی غذایی با تأکید بر نقش مدیریت منابع آب در دشت همدان- بهار

نویسندگان
1 دانشجوی دکتری اقتصاد کشاورزی دانشگاه تربیت مدرس تهران، ایران
2 دانشیار اقتصاد کشاورزی گروه اقتصاد کشاورزی، دانشکده کشاورزی، دانشگاه تربیت مدرس، تهران، ایران
چکیده
وقوع تغییرات اقلیم، از طریق ایجاد تغییر در عرضه و قیمت محصولات کشاورزی، مازاد اقتصادی تولیدکنندگان این بخش را تحت­الشعاع قرار می‌دهد. این اثرات در حالی است که بر اساس مطالعات پیشین، تغییرات اقلیم در دهه‌های آتی، پدیده‌ای مشهود در اغلب دشت‌های ایران خواهد بود؛ که تبعات منفی بر منابع آب و در پی آن، بر تولید محصولات کشاورزی و امنیت غذایی خواهد داشت. لذا با توجه به اهمیت تأمین غذا در فرایند توسعۀ اقتصادی، تأثیرپذیری امنیت غذایی از تغییرات اقلیم و بررسی آثار رفاهی این پدیده در کشورمان، ضروری است. با توجه به این رویکرد، در مطالعۀ حاضر، آثار بالقوۀ پیش‌بینی‌های مختلف اقلیمی بر الگوی کشت دشت همدان-­ ‌بهار، با در نظر گرفتن سال زراعی 1397-1396 به عنوان سال پایه، مورد بررسی قرار گرفت و میزان تأثیرپذیری عملکرد محصولات، منابع آب زیرزمینی، تولید، درآمد و متعاقب آن، امنیت غذایی در بخش کشاورزی این دشت ارزیابی شد. نتایج نشان داد که با در نظر گرفتن رویکردی خوش­بینانه در پیش‌بینی تغییرات اقلیم، همگام با افزایش برداشت از منابع آب زیرزمینی به میزان 13 درصد، افزایش میانگین قیمت محصولات کشاورزی به میزان 34 درصد و کاهش تولید به میزان 5 درصد در دورۀ برنامه‌ریزی 20 سالۀ تحقیق نسبت به سال پایه، ارزش حال درآمد خالص تولیدکنندگان و شاخص‌ امنیت غذایی در بخش کشاورزی منطقه، به ترتیب، به میزان 17 و 11 درصد کاهش خواهد یافت. با این حال، اتخاذ راهبرد مدیریتی کم‌آبیاری، بهبود امنیت غذایی دشت به میزان 11 تا 15 درصد را در پی خواهد داشت.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Assessing the Effects of Climate Change on the Prevalence of Food Insecurity with Emphasis on the Role of Water Resources Management in Hamadan-Bahar Plain

نویسندگان English

Shiva Soltani 1
Seyed Habibollah Mosavi 2
Sadegh Khalilian 2
Hamed Najafi Alamdarlo 2
1 Ph.D. Student, Department of Agricultural Economics, Tarbiat Modares University, Tehran, Iran
2 Associate Professor, Department of Agricultural Economics, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran.
چکیده English

Aim and Introduction

The health and food security of a country depends on the production of the agricultural sector, and any disturbance in the production process of this sector can threaten the food security of households. Among the challenges affecting the agricultural sector, climate change is of double importance due to its direct impact on crop yield and water resources. The occurrence of climate change through changes in the supply and price of crops, overshadows the producer surplus in this sector. This is despite the fact that, according to previous studies, climate change in the coming decades will be a visible phenomenon in most plains of Iran, and this issue will have negative consequences on water resources and, as a result, on the production of crops and food security. Therefore, considering the importance of food supply in the process of economic development, it is necessary to investigate the impact of food security on climate change and the welfare effects of this phenomenon in Iran. According to this approach, in the present study, the potential effects of different climatic scenarios on the cultivation pattern of the Hamadan-Bahar plain, considering 2018 as the base year, were investigated, and the impact of water resources, production, income and food security in the agricultural sector of this plain was evaluated.

Methodology

In this study, the dynamic positive mathematical programming(PMP) approach in endogenous price conditions was used. The experimental model, consisting of 18 crops and two types of irrigation technologies, was developed based on the information of 2018 as the base year and in a 20-year planning horizon. This model's objective function is to maximize the present value of net farm income. Resource constraints used in the experimental model include water, land, capital, labor, and chemical fertilizers, with chemical fertilizer restrictions repeated for each nitrogen, phosphate, and potash fertilizers. Finally, the GAMS software and CONOPT3 algorithm were used for data analysis. In the meteorological dimension of the model, the climatic measurement of rainfall was studied in the form of SSP climatic scenarios. Accordingly, the rate of evapotranspiration of crops and, consequently, the production and yield of crops in the region due to climate change were estimated and integrated into the PMP model. Each of these relationships is responsible for providing some of the information needed in the experimental research model. Finally, the dynamic endogenous price optimization framework was estimated as a unit pattern. After evaluating the changes in the income of farmer households and crop pattern in the face of climate change, the food security index was calculated in the different climate scenarios. In the final stage of the research, management strategies were evaluated in the agricultural sector of the Hamadan-Bahar plain to reduce the negative effects of climate change on the food security.

Results and Discussion

The results showed that the annual cumulative rainfall values of the Hamadan-Bahar plain in the next 20-year period would have a decreasing trend in all climate scenarios, so that in the SSP1, SSP2 and SSP3 scenarios, the average rainfall would be 303, 272 and 252 mm, respectively. Meanwhile, the amount of precipitation in the base year of this research (2018) is reported as 323 mm. Also, the results showed that with the considering an optimistic approach in predicting climate changes (SSP2 scenario), along with the increase of extraction from underground water sources by 13%, the increase in average price of agricultural products by 34% and the decrease in production by 5% in the 20-year planning period compared to the base year, the present value of net producer income and the food security index in the agricultural sector of the region would decrease by 17 and 11 percent, respectively. However, the adoption of management strategies such as the optimal deficit irrigation would improve the food security of the plain by 11 to 15 percent.

Conclusion

The change in the climate conditions in the coming years would have negative effects on the food security conditions in the agricultural sector of the Hamadan-Bahar plain. In this situation, considering that it is impossible to avoid different forms of climate scenarios, it is necessary to apply strategies to adapt to the mentioned phenomenon. Based on this, the optimal deficit irrigation, as a management strategy, was investigated, and the results confirm the positive effect of this strategy in improving the food security index in the region. Therefore, according to the results, management strategies with emphasis on deficit irrigation in the agricultural sector of Hamadan-Bahar plain should be put on the agenda.

Keywords: Rainfall, Production, Groundwater Resources, Dynamic Pattern, Food Insecurity

JEL Classification: C02, C22, C33, C46, C61, Q25, Q54

کلیدواژه‌ها English

Rainfall
Production
Groundwater Resources
Dynamic Pattern
Food insecurity
Aborisade, B. and Bach, C. (2014) Assessing the pillars of sustainable food security. European International Journal of Science and Technology, 3(4): 117-125.
Absar, S. M. and Preston, B. L. (2015) Extending the shared socioeconomic pathways for sub-national impacts, adaptation, and vulnerability studies. Global Environmental Change, 33: 83-96.
Afruzi, A. and Zare Abyaneh, H. (2020) Investigation of agricultural water demand under the combination scenarios of climate change, irrigation efficiency enhancement, cropping pattern changes, and the development of early-maturing cultivars: A case study of Hamedan-Bahar plain. Iranian Journal of Irrigation and Drainage, 14(1): 61-75. (In Farsi)
Bagherzadeh Azar, F., Ranjpour, R., Karami Takanlou, Z., Motaffaker Azad, M. and Assadzadeh, A. (2017) The impact of economic variables on food security in the provinces of Iran: Measuring and comparing. Quarterly Journal of Applied Theories of Economics, 3(4). 47-76. (In Farsi)
Baniasadi, M., Zare Mehrjordi, M. R., Mehrabi Boshrababd, H., Mirzaei, H. R. and Rezaei Estakhrooye, A. (2018) Social welfare decrease due to the drop in groundwater level (case study of wheat farmers in Orzuiyeh plain). Agricultural Economics and Development, 26(2): 165-194. (In Farsi)
Barikani, E., Shajari, S. and Amjadi, A. (2008) Price and income elasticity of demand for food in Iran: a dynamic demand system. Agricultural Economics and Development, 15(4): 125-145. (In Farsi)
Bayatvarkeshi, M., Fasihi, R. and Zare Abyaneh, H. (2018) Numerical simulation of groundwater flow path in Hamadan-Bahar aquifer. Iranian Journal of Health and Environment, 11(1): 49-62. (In Farsi)
Belloumi, M. (2014) Investigating the linkage between climate variables and food security in ESA Countries. AGRODEP Working Paper 0004.
Bohmelt, T. (2017) Employing the shared socioeconomic pathways to predict CO2 emissions. Environmental Science & Policy, 75: 56-64.
Borlizzi, A., Delgrossi, M. E. and Cafiero, C. (2017) National food security assessment through the analysis of food consumption data from Household Consumption and Expenditure Surveys: The case of Brazil’s Pesquisa de Orçamento Familiares 2008/09. Food Policy, 72: 20-26.
Bruinsma, J. (2017) World agriculture: towards 2015- 2030, FAO, Rout ledge.
Doorenbos, J. and Kassam, A. H. (1979) Yield response to water. FAO Irrigation and Drain Paper No.33, FAO, Rome, Italy.
FAO, (2022). https://www.fao.org/
Farsi Aliabadi, M. M., Daneshvar Kakhki, M., Sabouhi Sabouni, M., Dourandish, A. and Amadeh, H. (2020) Determination of factors affecting the prevalence of undernourishment in rural areas of Iran. Village and Development, 23(3): 27-49. (In Farsi)
Garbrecht, J., Van Liew, M. and Brown, G. O. (2004) Trends in precipitation, streamflow and evapotranspiration in the great plains of the United States. J. Hydrol. Eng. 9: 360–367.
Gohar, A. A. and Cashman, A. (2016) A methodology to assess the impact of climate variability and change on water resources, food security and economic welfare. Agricultural Systems, 147: 51-64.
Howitt, R. E. (1995) Positive mathematical programming. Am. J. Agric. Econ, 77 (2): 329–342.
Huang, Q., Howitt, R. and Rozelle, S. (2012) Estimating production technology for policy analysis: Trading off precision and heterogeneity. Journal of Productivity Analysis, 38(2): 219-233.
Iran Ministry of Agriculture Jihad, (2022). https://www.maj.ir/
Irmak, S., Odhiambo, L. O., Specht, J. E. and Djaman, K. (2013) Hourly and daily single and basal evapotranspiration crop coefficients as a function of growing degree days, days after emergence, leaf area index, fractional green canopy cover, and plant phenology for soybean. Trans. ASABE, 56: 1785–1803.
Jozi, A., Safa, L. and Salali Moghadam, N. (2020) A study on the effects of nutritional awareness and attitude on rural households’ food security level (The case of Zanjan county). Iranian Journal of Agricultural Economics and Development Research, 51(4): 715-730. (In Farsi)
Karimi, S., Rasekhi, S. and Ehsani, M. (2010) An investigation of the demand for subsidized food in urban areas of Iran, using AIDS model for subsidy allocation priority. Iranian Journal of Economic Research, 13(39): 147-166. (In Farsi)
Kiani Ghalehsard, S., Shahraki, J., Akbari, A. and Sardar Shahraki, A. (2020) Investigating the effects of climate change on food security of Iran. Journal of Natural Environmental Hazards, 8(22): 19-40. (In Farsi)
Kotagama, H., Al Jabri, S. A. N., Boughanmi, H. and Guizani, N. (2014) Impact of food prices, income and income distribution on food security in Oman. In Environmental Cost and Face of Agriculture in the Gulf Cooperation Council Countries (pp. 145-161). Springer, Cham.
Lipper, L., Thornton, P., Campbell, B. M., Baedeker, T., Braimoh, A., Bwalya, M., Caron, P., Cattaneo, A., Garrity, D., Henry, K. and Hottle, R. )2014( Climate smart agriculture for food security. Nature climate change, 4(12): 1068.
Liu, W. Z., Hunsaker, D. J., Li, Y. S., Xie, X. Q. and Wall, G. W. (2002) Interrelations of yield, evapotranspiration and water use efficiency from marginal analysis of water production function. Agric. Water Manag, 56: 143–151.
Lovelle, M. (2015) Food and water security in the kingdom of Saudi Arabia. Independent Strategic Analysis of Australia’s Global Interests.
Moazzezi, F., Yavari, G. R., Mosavi, S. H. and Bagheri, M. (2020) Assessing the impact of climate change on agriculture in Hamedan-Bahar plain with emphasis on water productivity and food security. Journal of Agricultural Economics and Development, 34(3): 305-323. (In Farsi)
Moltedo, A., Troubat, N., Lokshin, M. and Sajaia, Z. (2014). Analyzing food security using household survey data. Washington, DC: The World Bank.
Momeni, S. and Zibaei, M. (2013) The potential impacts of climate change on the agricultural sector of Fars province. Journal of Agricultural Economics and Development, 27(3): 169-179. (In Farsi)
Mosavi, S. H., Soltani, S. and Khalilian, S. (2020) Coping with climate change in agriculture: Evidence from Hamadan-Bahar plain in Iran. Agricultural Water Management, 241: 106332.
Mosavi, S., Alipour, A. and Arjomandi, A. (2018) The role of climatic distinctions in the growth process of agricultural sector in Iran. Agricultural Economics and Development, 26(2): 1-29. (In Farsi)
Nikouei, A. R. and Zibaei, M. (2012) Water resources management and food security in Zayandeh Rud basin: An integrated river basin analysis. Journal of Economics and Agricultural Development. 26(3): 183-196.
Pakravan, M., Hosseini, S., Salami, H. and Yazdani, S. (2015) Identifying effective factors on food security of Iranian's rural and urban household. Iranian Journal of Agricultural Economics and Development Research, 46(3): 395-408. (In Farsi)
Parhizkari, A. and Yazdani, S. (2017) Assessment of the economic and hydrological effects of the climate change on Kharrood watershed. Iranian journal of Ecohydrology, 4(3): 711-724. (In Farsi)
Ravand, L., Dourandish, A. and Sabuhi, M. (2018) Effect of trade liberalization on production, consumption and trade of rice. Journal of Agricultural Economics and Development, 32(3): 199-212. (In Farsi)
Regional Water Company of Hamadan, (2022). https://www.hmrw.ir/st/72
Rezaeifar, M., Khalilian, S. and Najafi Alamdarlo, H. (2022) Spatial distribution of food insecurity in urban and rural areas of Iran. Agricultural Economics, 16(1). 99-121. (In Farsi)
Sabouhi, M. and Ahmadpour, M. (2012) Estimation of Iran agricultural products demand functions using mathematical programming (Application of maximum entropy method). Agricultural Economics, 6(1): 71-91. (In Farsi)
Safari Shad, M., Habibnejad Roshan, M., Solaimani, K., Ildoromi, A. and Zeinivand, H. (2017) The potential effects of the climate change on the river flow in Hamadan-Bahar watershed. Hydrogeomorphology, 3(10): 81-98. (In Farsi)
Soltani, S., Mosavi, S., Khalilian, S. and Najafi Alamdarlo, H. (2022). The effects of climate change and climate variability on economic surplus of producers and consumers in the agricultural sector of Hamadan– Bahar plain. Iranian Journal of Agricultural Economics and Development Research, 10.22059/ijaedr.2022.341524.669140. (In Farsi)
Soltani, S. and Mosavi, S. H. (2016) Deficit irrigation strategy and improving irrigation technology; the optimal adaptation in coping with climatic change. Agricultural Economics, 9(4): 121-149. (In Farsi)
Songew, V. (2012) Strategies to improve food security in Africa. Foresight Africa: Top Priorities for the Continent in 2012.
Sudaryanto, T. (2010) Strategy and policy to strengthen national food security: Lesson from Indonesia. Indonesian Center for Agriculture Socio Economic and Policy Studies (ICASEPS).
Wang, J. (2010) Food security, food prices and climate change in China: A dynamic panel data analysis. International Conference on Agricultural Risk and Food Security.
Webb, P. and Beatrice, R. (2010) Addressing the “In” in food insecurity. USAID Office of Food for Peace, 1: 1-36.
World Bank, (2022). https://www.worldbank.org/
Zhang, H., Wang, X., You, M. and Liu, C. (1999) Water-yield relations and water-use efficiency of winter wheat in the North China plain. Irrig. Sci, 19: 37–45.