پژوهش ها و چشم اندازهای اقتصادی

پژوهش ها و چشم اندازهای اقتصادی

بررسی افزایش نرخ ارز و تأثیر آن بر برخی متغیرهای کلان اقتصادی ایران در شرایط تحریم

نویسندگان
1 استاد دانشکده اقتصاد و علوم سیاسی، دانشگاه شهید بهشتی، تهران، ایران
2 دکتری اقتصاد، دانشکده اقتصاد و علوم سیاسی، دانشگاه شهید بهشتی، تهران، ایران
چکیده
تغییر نرخ ارز، از مسیرهای مختلف بر عملکرد اقتصادی اثرگذار است. در این مطالعه، به بررسی اثر تغییر نرخ ارز بر عملکرد متغیرهای مهم اقتصاد کلان، یعنی تولید، اشتغال و سطح عمومی قیمت ها خواهیم پرداخت. به این منظور، از یک الگوی اقتصادسنجی کلان با رویکرد داده‌های ترکیبی تواتر متفاوت استفاده شده است. الگوی مذکور، بر اساس مبانی نظری اقتصادی و با توجه به حقایق آشکار شده اقتصاد ایران، تصریح و به کمک داده‌های سری زمانی در محدوده سال‌های 1338 تا 1396 برآورد شده‌اند. از آنجا که الگوی مورد مطالعه به جهت داشتن اطلاعات کامل تر، قدرت توضیح‌دهندگی بهتری نسبت به سایر مدل های سری زمانی دارد، انتظار می‌رود که امکان ارزیابی دقیق‌تری از سیاست های ارزی داشته باشد. الگو، دارای بخش‌های تولید، مخارج مصرفی و سرمایه‌گذاری، تجارت خارجی، دولت، اشتغال، پول و قیمت‌ها است. علاوه بر این، با توجه به نتایجی که از شبیه‌سازی پویای الگو حاصل گردید، الگو می‌تواند نماینده مناسبی از سازوکار اقتصاد ایران باشد. از سوی دیگر، الگوی مدنظر با لحاظ شرایط تحریم، می‌تواند آثار سیاست های اقتصادی را به گونه‌ مناسبتری بررسی نماید. در نهایت، نتایج حاصل از ارزیابی سیاست های ارزی در شرایط وجود تحریم، بررسی شده است. بر اساس نتایج الگو، در رابطه با سیاست تنزل ارزش پول ملی در اقتصاد ایران، افزایش نرخ ارز در شرایط تحریم، علاوه بر کاهش تولید، زمینه‌ساز کاهش اشتغال و فشارهای تورمی می‌گردد.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Exchange Rate Changes and their Impact on Some Macroeconomic Variables for the Iranian Economy under Sanctions

نویسندگان English

Parviz Davoodi 1
mohamadreza sezavar 2
1 Professor of Economics, Shahid Beheshti University, Tehran, Iran
2 Ph.D. of Economics, Shahid Beheshti University,Tehran, Iran
چکیده English

Introduction:

All economists believe that the most important goals of economic policy are achieving full employment, price stabilization and economic growth in the society. On the other hand, rendering the formation of the exchange rate to the market mechanism and increasing it disproportionately with the purchasing power of the rial has a negative effect on production and employment and causes an increase in prices and a decrease in the value of the national currency, which again provides the ground for the next increase in the exchange rate. For this purpose, in most societies, especially in developing countries, currency policies are used to achieve the mentioned goals. Changes in exchange rates affect economic performance in different ways. In this study, we will examine the effect of exchange rate changes on the performance of important macroeconomic variables, namely production, employment and the general level of prices. Taking into account the effects of sanctions against the country, the model considers the mechanism and channel of its effect on the foreign sector of the economy, while creating an index with monthly frequency for it, and its effect has been calculated directly on all macroeconomic variables of the foreign sector of the model.



Methodology:

During the last two decades, tremendous developments have taken place in the field of modeling time series variables and predicting the future values of economic variables, one of which is to specify and estimate equations where the variables involved in that equation, unlike usual, have different frequencies. Mixed-data sampling (MIDAS) has been specified and estimated with the help of time series data over the period 1959-2017. Mixed data sampling regressions are now commonly used to deal with time series data sampled at different frequencies.

A MIDAS regression is a direct forecasting tool which can relate future low-frequency data with current and lagged high-frequency indicators, and yield different forecasting models for each forecast horizon. It can flexibly deal with data sampled at different frequencies and provide a direct forecast of the low-frequency variable. It incorporates each individual high-frequency data in the regression, which solves the problems of losing potentially useful information and including mis-specification.



Results and Discussion:

The presented macro econometric model is developed in the framework of the aggregate supply-aggregate demand model. Total demand is made up of household consumption expenditures, investment expenditures separately from private and government, government current expenditures and net exports. The production function forms the supply side of the economy according to the utilization rate of the production capacity. The modeling of the two parts of supply and demand has been done in a completely consistent manner, so that after the estimation of the model, it is possible to solve and simulate the model to examine the effect of economic policies and predict macro variables. According to the results of the model, in relation to the policy of devaluation of the national currency in the Iranian economy, the increase in the exchange rate in the face of sanctions, in addition to reducing production, paves the way for employment and inflationary pressures. Indeed, The incorrect approach of increasing the exchange rate has not only limited economic growth due to the increase in production costs, but has also caused the impoverishment of the oppressed and the unfair distribution of income in the society.



Conclusion:

Because the model under study has better explanatory power than other time series models due to more complete information, it is expected that it will be possible to evaluate exchange rate policies more accurately. The model has sections on production, consumption and investment expenditures, foreign trade, government, employment, money and prices. In addition, according to the very good results obtained from the dynamic simulation of the model, the model can be a good representative of the mechanism of the Iranian economy. Finally, the results of the evaluation of foreign exchange policies in the context of sanctions can be reviewed.

کلیدواژه‌ها English

MIDAS-Macro Econometric Model (MIDAS-MEM)
Iran's economy
Sanctions
foreign exchange policy
Andreou, E., Ghysels, E., & Kourtellos, A. (2010). Regression Models with Mixed Sampling Frequencies. Journal of Econometrics, 158(2), 246-261.
Andreou, E., Ghysels, E., and Kourtellos, A. (2013). Should macroeconomic forecasters use daily financial data and how? Journal of Business and Economic Statistics, 31(2):240–251.
Andreou, E., Ghysels, E., Kourtellos, A.(2011). Forecasting with mixed-frequency data. In: Clements, M., Hendry, D. (Eds.), Oxford Handbook of Economic Forecasting. Oxford University Press, Oxford, pp. 225–245
Armesto, M. (2010); Forecasting with mixed frequencies, Federal Reserve Bank of Saint Louis 92, 521-536.
Bahmani-Oskooee, M and Gelan, a (2018). “Exchange rate volatility and international trade performance: evidence from 12 African countries”. Economic analysis and policy, Vol. 58, pp.14-21
Breitung, J., Roling, C.(2015). Forecasting inflation rates using daily data: a nonparametric MIDAS approach. J. Forecast. 34 (7), 588–603.
Chen, X., and E. Ghysels. (2011). News—good or bad—and its impact on predicting future volatility. Review of Financial Studies 24, 1, 46–81
Clements, M. P., & Galvão, A. B. (2008). Macroeconomic Forecasting with Mixed-Frequency Data: Forecasting Output Growth in the United States. Journal of Business & Economic Statistics, 26(4), 546-554.
Clements, M. P., A. B. Galvão, and J. H. Kim. (2008). Quantile forecasts of daily exchange rate returns from forecasts of realized volatility. Journal of Empirical Finance 15:729–50.
Coudert,Virginie,Couharde,Cecile and Mignon Valerie.(2015). On the impact of volatility on the real exchange rate- terms of trade nexus: rivisiting commodity currencies, Journal Of International Money and Finance
Foroni, C., & Marcellino, M. (2014). Mixed-Frequency Structural Models: Identification, Estimation, and Policy Analysis. Journal of Applied Econometrics, 29(7), 1118-1144.
Ghyseles, E., Sinko, A., & Valkano R. (2006) “MIDAS regressions: Further results and new directions”. econometric Reviews, 2007, 26
Ghysels, E. (2016). Macroeconomics and the Reality of Mixed Frequency Data. Journal of Econometrics, 193(2), 294-314.
Ghysels, E. , Santa-Clara, & Valkano R. (2004). The MIDAS Touch :Mixed Frequency Data Sampling Regressions. Manuscript, University of North Carolina and UCLA
Ghysels, E.(2016). Macroeconomics and the reality of mixed frequency data. J. Econ.193(2),294-314
Ghysels, E., & Wright, J. H. (2009). Forecasting Professional Forecasters. Journal of Business & Economic Statistics, 27(4), 504-516.
Ghysels, E., Marcellino, M. (2018). Applied Economic Forecasting Using Time Series Methods. Oxford University Press, Oxford, New York.
Ghysels, E., Qian, H., (2019). Estimating MIDAS regressions via OLS with polynomial parameter profiling. Economet. Stat. 9, 1–16.
Gotz, T. B., Hecq, A., and Urbain, J.-P. (2014). Forecasting mixed-frequency time series with ecm-midas models. Journal of Forecasting, 33(3):198–213.
Hua, Ping (2011). The Economic and Social Effects of Real Exchange Rate:Evidence from the Chinese Provinces ; Clermont University , Paris
Kenneth Katzman(2020)Iran Sanctions,Congressional Research Service, RS20871 VERSION 307 · UPDATED
Klein, L.R., Sojo, E. (1989) Combinations of High and Low Frequency Data in Macroeconomic Models. in L.R. Klein and J. Marquez (EDS), Economics in Theory and practice: An Eclectic & Approach. Kluwer Academic Publishers, pp.3- 14
Ramos, Raquel Almeida (2012). Intersections between exchange rate and inflation plocies in IMF Recommendations ; The International Policy Center For Inclusive Growth , UNDP and the Government of Brazil.
Schnabl, Gunther (2007). Exchange Rate Volatility and Growth in Small Open Economics at the EMU Periphery ; European Monetary :union: (EMU) , 773
Seong,Byeongchan (2020), Smoothing and forecasting mixed-frequency time series with vector exponential smoothing models, Economic Modelling, 91:463–468