Economic Research and Perspectives

Economic Research and Perspectives

A Comparison of Error Correction Model with Fuzzy Regression in Forecasting Gross Domestic Product (GDP) in Iran

Authors
1 Professor of Economics, University of Tabriz
2 Professor of Economics, Shahid Chamran University of Ahvaz
3 Ph.D. Student of Economics, University of Tabriz
Abstract
National accounts data are of the most important statistical tools in planning and making economic policy. Therefore, forecasting the main economic variables in the economy is of great importance. Economic growth is one of the key macroeconomic variables, which gets top priority in forecasting. The purpose of this study is to identify the appropriate methodology for forecasting economic growth in Iran. This study introduces fuzzy regression model and its’ ability to forecast economic growth of Iran in comparison with Error Correction Model (ECM). To do this, the Iran’s GDP is modeled through ECM and Fuzzy regression models using annual data form 1959 to 2001. Then, Iran’s GDP growth is predicted for 2002-2012. Finally, the performances of these models are compared using common criteria for evaluating forecast accuracy including mean absolute error (MAE), root mean square Error (RMSE), mean absolute percentage error (MAPE) and Theil’s inequality coefficient (TIC). The results indicate that the performance of fuzzy regression is far better than that of ECM in predicting GDP growth in Iran. Moreover, forecast accuracy of fuzzy regression model is of statistically significant difference in comparison with ECM model.
Keywords

ابریشمی، حمید؛ مهرآرا، محسن؛ احراری، مهدی و سوده میرقاسمی. (1388). الگوسازی و پیش بینی رشد اقتصادی ایران با رویکرد شبکه عصبی GMDH، تحقیقات اقتصادی، شماره 88: 24-1.
امینی، علیرضا؛ نشاط، حاجی محمد و اصلاحچی، محمد رضا. (1387). بازنگری برآورد سری زمانی جمعیت شاغل به تفکیک بخش های اقتصادی ایران. مجله برنامه و بودجه، شماره 102: 97-47.
زراء نژاد، منصور؛ خداپناه، مسعود؛ کیانی، پویان و ابراهیمی، صلاح. (1392). ارزیابی و مقایسه عملکرد مدل رگرسیون خودبازگشتی میانگین متحرک انباشته فازی و شبکه عصبی فازی در پیش بینی رشد اقتصادی ایران. فصلنامه مطالعات اقتصادی کاربردی ایران، شماره 8: 51-33.
زراء نژاد، منصور؛ کیانی، پویان؛ ابراهیمی، صلاح و رئوفی، علی. (1391). پیش بینی قیمت نفت خام اوپک با استفاده از مدل خودبازگشتی میانگین متحرک انباشته فازی. فصلنامه اقتصاد محیط زیست و انرژی، شماره 5، صفحات 127-107.
قدیمی، محمدرضا و مشیری، سعید. (1381). مدل سازی و پیش بینی رشد اقتصادی در ایران با استفاده از شبکه های عصبی مصنوعی (ANN). پژوهش های اقتصادی ایران، شماره 12: 125-97.
کمیجانی، اکبر و معمارنژاد، عباس. (1383). اهمیت کیفیت نیروی انسانی و R&D در رشد اقتصادی ایران. فصل نامه پژوهشنامه بازرگانی، شماره 31: 31-1.
Azadeh, A; Khakestani, M, & Saberi, M. (2009). A Flexible Fuzzy Regression Algorithm for Forecasting Oil Consumption Estimation. Energy Policy, 37: 5567-79.
Banerjee, A; Dolado, J. & Mestre, R. (1998). Error-correction Mechanism Tests for Co-integration in a Single-equation Framework. Journal of Time Series Analysis, 19(2): 267-283.
Diebold, F. X. and Mariano, R. S. (1995) Comparing Predictive Accuracy. Journal of Business and Economic Statistics, 13: 253-263.
Harvey, D. I.; Leybourne S. J. and Newbold, P. (1997). Tests for Forecast Encompassing. Journal of Business and Economic Statistics, 16: 254-259.
Jafari-Samimi, A.; Shirazi, B. & Fazlollahtabar, H. (2007). A Comparison between Time Series. Exponential Smoothing and Neural Network Methods to Forecast GDP of Iran. Iranian Economic Review,12(19): 35-19.
Khashei, Mehdi; Hejazi, Seyed Reza, & Bijari, Mehdi. (2008). A New Hybrid Artificial Neural Networks and Fuzzy Regression Model for Time Series Forecasting. Fuzzy Sets and Systems, 159: 769-786.
Mirbagheri, mirnaser. (2010). Fuzzy-Logic and Neural Network Fuzzy Forecosting of Iran GDP Growth, African Journal of Business Management, 4(6): 925-929.
Pesaran, H. Shin, Y. and Smith, R. (2001). Bound Testing Approaches to the Analysis of Level Relationships. Journal of Applied Econometric, 16: 289-326.
Profillidis,V.; Botzoris, G., & Lathiras, P. (2005). Fuzzy Models and Cointegration  Analysis for the Forecast of Tourist Demand. EUSFLAT- LFA: 53-60.
Jafari-Samimi, A., Shirazi, B. & Fazlollahtabar, H. (2007). A Comparison between Time Series, Exponential Smoothing and Neural Network Methods  to Forecast GDP of Iran. Iranian Economic Review, 12(19): 19-35.
Shapiro, A.F. (2004). Fuzzy Regression and the Term Structure of Interest Rate. Revisited in: Proceedings of the 14th.. International AFIR Colloquium,1: 29-45.
Tanaka, H., & Ishibuchi, H. (1992). Possibility Regression Analysis Based on Linear Programming, in: J. Kacprzyk, M. Fedrizzi (Eds.), Fuzzy Regression Analysis, Omnitech Press, Warsaw and Physica-Verlag, Heidelberg: 47-60.
Tseng, F.M; Tzeng, G.H; Yu, H.C; Yuan, B.J.C. (2001) Fuzzy ARIMA Model for Forecasting the Foreign Exchange Market. Fuzzy Sets and Systems, 118: 9-19.
Wang, H. F., & Tsaur, R. C. (2000). Insight of a Fuzzy Regression Model. Fuzzy Sets and Systems, 112(3): 355-369.
Yen, K. K; Ghoshray, S, & Roig, G. (1999). A Linear Regression Model using  Triangular Fuzzy Number Coefficients. Fuzzy Sets and Systems, 106 (1999): 167-177.
Zimmerman, H. J. (1996). Fuzzy Sets Theory and its Applications, Kluwer, Dordrecht.